169 lines
3.4 KiB
C

#include "./polynominal_interpolation.h"
/*
Newton interpolation polynomial
*/
/* Divided difference is evaluated for:
array y stands for f(x)
array x stands for x
number i stands for index of evaluated difference (from 0)
number d stands for order of difference (from 0)
example: https://shorturl.at/tBCPS */
double div_diff(double *y, double *x, unsigned int i, unsigned int d)
{
return (y[i] - y[i - 1]) / (x[i] - x[i - d]);
}
/* Evaluates divided differences of n values - array of some kind of derivatives with big enough dx
Example: https://shorturl.at/tBCPS
Warning: result is evaluated in `double *y` array */
double *div_diff_es(double *x, double *y, unsigned int n)
{
for (int i = 1; i < n; i++) // first element remains unchanged
for (int j = n - 1; j >= i; j--) // evaluate from the end of array, decreacing number of step every repeation
y[j] = div_diff(y, x, j, i);
return y;
}
/*
Coeficients of simplified polynomial computation
*/
void simplify_polynomial(double *res, double *rev_el_coef, double *x, unsigned int n)
{
for (int i = 0; i < n; i++)
if (rev_el_coef[i])
for (int j = 0; j <= i; j++)
res[i - j] += (j % 2 ? -1 : 1) * rev_el_coef[i] * compute_sum_of_multiplications_of_k(x, j, i);
}
double compute_sum_of_multiplications_of_k(double *arr, unsigned int k, unsigned int n)
{
if (k == 0)
return 1;
if (k == 1 && n == 1)
return arr[0];
unsigned int *selected = (unsigned int *)malloc(sizeof(unsigned int) * k); // Indexes of selected for multiplication elements
int i = 0, // index of `arr` array
j = 0; // index of `selected` array
double sum = 0;
while (j >= 0)
{
if (i <= (n + (j - k)))
{
selected[j] = i;
if (j == k - 1)
{
sum += mult_by_indexes(arr, selected, k);
i++;
}
else
{
i = selected[j] + 1;
j++;
}
}
else
{
j--;
if (j >= 0)
i = selected[j] + 1;
}
}
free(selected);
return sum;
}
double mult_by_indexes(double *arr, unsigned int *indexes, unsigned int size)
{
double res = 1;
for (int i = 0; i < size; i++)
res *= arr[indexes[i]];
return res;
}
/*
User Interface
*/
/* Prints interpolation polynomial in Newton notation */
void print_newton_poly(double *f, double *x, unsigned int n)
{
for (int i = 0; i < n; i++)
{
printf("(%lf)", f[i]);
for (int j = 0; j < i; j++)
printf("*(x-(%lf))", x[j]);
if (i != n - 1)
printf("+");
}
}
unsigned int insert_n()
{
printf("Insert number of dots: ");
unsigned int n = 0;
scanf("%u", &n);
return n;
}
void insert_coords(double *xes, double *yes, unsigned int n)
{
printf("Insert dots coordinates in the following format:\n<x> (space) <y>\nEach dot on new line\n");
for (int i = 0; i < n; i++)
{
double x, y;
scanf("%lf %lf", &x, &y);
xes[i] = x;
yes[i] = y;
}
}
void print_array(double *arr, unsigned int n)
{
for (int i = 0; i < n; i++)
printf("%lf ", arr[i]);
printf("\n");
}
/*
Main
*/
int main()
{
unsigned n = insert_n();
double *x = (double *)malloc(sizeof(double) * n),
*y = (double *)malloc(sizeof(double) * n);
insert_coords(x, y, n);
double *f = div_diff_es(x, y, n);
print_newton_poly(f, x, n);
double *coeficients = (double *)malloc(sizeof(double) * n);
simplify_polynomial(coeficients, f, x, n);
print_array(coeficients, n);
return 0;
}