196 lines
4.0 KiB
C

#include "./polynominal_interpolation.h"
/* Utils */
double fabs(double x)
{
return x > 0 ? x : -x;
}
/*
Newton interpolation polynomial
*/
/* Divided difference is evaluated for:
array y stands for f(x)
array x stands for x
number i stands for index of evaluated difference (from 0)
number d stands for order of difference (from 0)
example: https://shorturl.at/tBCPS */
double div_diff(double *y, double *x, unsigned int i, unsigned int d)
{
return (y[i] - y[i - 1]) / (x[i] - x[i - d]);
}
/* Evaluates divided differences of n values - array of some kind of derivatives with big enough dx
Example: https://shorturl.at/tBCPS
Warning: result is evaluated in `double *y` array */
double *div_diff_es(double *x, double *y, unsigned int n)
{
for (int i = 1; i < n; i++) // first element remains unchanged
for (int j = n - 1; j >= i; j--) // evaluate from the end of array, decreacing number of step every repeation
y[j] = div_diff(y, x, j, i);
return y;
}
/*
Coeficients of simplified polynomial computation
*/
void simplify_polynomial(double *res, double *el_coef, double *x, unsigned int n)
{
double *tmp_polynomial = (double *)malloc(sizeof(double) * n);
tmp_polynomial[0] = 1;
for (int i = 0; i < n; i++)
if (el_coef[i])
{
if (i > 0)
mult_by_root(tmp_polynomial, x[i - 1], i - 1);
for (int j = 0; j <= i; j++)
res[j] += el_coef[i] * tmp_polynomial[j];
}
}
void mult_by_root(double *res, double root, unsigned int step)
{
for (int j = step + 1; j >= 0; j--)
res[j] = (j ? res[j - 1] : 0) - (root * res[j]);
}
/*
User Interface
*/
/* Prints interpolation polynomial in Newton notation */
void print_newton_poly(double *f, double *x, unsigned int n)
{
printf("Newton polynomial form:\n");
for (int i = 0; i < n; i++)
{
if (f[i]) // If coefficient != 0
{
/* Coefficient sign and sum symbol */
if (i > 0 && f[i - 1]) // If it's not the first summond
{
if (f[i] > 0)
printf("+ ");
else
printf("- ");
}
else if (f[i] < 0) // If it is the first summond and coefficient is below zero
printf("-");
printf("%lf", fabs(f[i])); // Print coefficient without sign
for (int j = 0; j < i; j++) // For each (x-xi) bracket
{
if (x[j]) // If summond is not zero, print it
{
if (x[j] > 0)
printf("*(x-%lf)", x[j]);
else
printf("*(x+%lf)", -x[j]);
}
else
printf("*x");
}
printf(" ");
}
}
printf("\n");
}
unsigned int insert_n()
{
printf("Insert number of dots: ");
unsigned int n = 0;
scanf("%u", &n);
return n;
}
void insert_coords(double *xes, double *yes, unsigned int n)
{
printf("Insert dots coordinates in the following format:\n<x> (space) <y>\nEach dot on new line\n");
for (int i = 0; i < n; i++)
{
double x, y;
scanf("%lf %lf", &x, &y);
xes[i] = x;
yes[i] = y;
}
}
void print_array(double *arr, unsigned int n)
{
printf("Simplified coefficients array (starting from 0 upto n-1 power):\n");
for (int i = 0; i < n; i++)
printf("%lf ", arr[i]);
printf("\n");
}
void print_poly(double *coef, unsigned int n)
{
printf("Simplified polynom:\n");
for (int i = 0; i < n; i++)
{
if (coef[i])
{
if (i > 0 && coef[i - 1])
if (coef[i] > 0)
printf("+ ");
else
printf("- ");
else
printf("-");
printf("%lf", fabs(coef[i]));
if (i > 0)
printf("*x");
if (i > 1)
printf("^%d ", i);
else
printf(" ");
}
}
printf("\n");
}
/*
Main
*/
int main()
{
unsigned n = insert_n();
double *x = (double *)malloc(sizeof(double) * n),
*y = (double *)malloc(sizeof(double) * n);
insert_coords(x, y, n);
double *f = div_diff_es(x, y, n);
print_newton_poly(f, x, n);
double *coefficients = (double *)malloc(sizeof(double) * n);
simplify_polynomial(coefficients, f, x, n);
print_array(coefficients, n);
print_poly(coefficients, n);
return 0;
}