Compare commits
12 Commits
Author | SHA1 | Date | |
---|---|---|---|
51ceff9331 | |||
61d3b7a2a3 | |||
4d9bc48ba1 | |||
1155ad07b0 | |||
ea2d62da55 | |||
f08e2e6b35 | |||
c0c5e219ea | |||
c8682c7563 | |||
7efb7133f6 | |||
5311f70746 | |||
8555f1e30e | |||
614dfdd03d |
1
.gitignore
vendored
@ -2,3 +2,4 @@ a.out
|
|||||||
main
|
main
|
||||||
.vscode
|
.vscode
|
||||||
vgcore*
|
vgcore*
|
||||||
|
output.txt
|
88
README.md
@ -1,3 +1,89 @@
|
|||||||
# Polynomial Interpolation
|
# Polynomial Interpolation
|
||||||
|
|
||||||
ANSI C program which composes polynomial of n - 1 degree that passes through n dots.
|
ANSI C program which composes polynomial of n - 1 degree that passes through n dots. It presents it in Newton interpolation polynomial and monic form.
|
||||||
|
|
||||||
|
## Interface
|
||||||
|
|
||||||
|
Application accepts as standart input decimal below 2147483647 `n` as number of dots, followed by n dots in format: `<x> (space) <y>` on each line, where `x` is an abscisse and `y` is an ordinate of single dot. Dot coordinates must fit [2.22507e-308;1.79769e+308] range by modulo.
|
||||||
|
|
||||||
|
Result will be printed to standart output in the following format:
|
||||||
|
|
||||||
|
Newton polynomial form:
|
||||||
|
|
||||||
|
$$f_0 - f_1*(x-x_0) + ... + f_n(x-x_0)*(x-x_1)*...*(x-x_{n-1})$$
|
||||||
|
|
||||||
|
Simplified coefficients array (starting from 0 upto n-1 power):
|
||||||
|
|
||||||
|
$$a_0 a_1 ... a_{n-1} a_n$$
|
||||||
|
|
||||||
|
Polynomial in monic form:
|
||||||
|
|
||||||
|
$$a_0 - a_1*x + ... + a_{n-1}*x^(n-2) + a_n*x^(n-1)$$
|
||||||
|
|
||||||
|
Where $f_i$ is a divided difference of $y_1,...,y_i$, $a_i$ are coefficients of resulting monic polynomial
|
||||||
|
|
||||||
|
## Data structure
|
||||||
|
|
||||||
|
- `n` is an `unsigned int` variable, that is used to input and store number of dots
|
||||||
|
|
||||||
|
- `x` is a pointer to array of `n` `double`s, that is used to store abscisses of dots
|
||||||
|
|
||||||
|
- `y` is a pointer to array of `n` `double`s, that is used to store ordinates of dots
|
||||||
|
|
||||||
|
- `coefficients` is a pointer to array of `n` `double`s, that is used to store coefficients of monic interpolation polynomial
|
||||||
|
|
||||||
|
- `i`, `j` are `int` variables, those are used in loops as iterators
|
||||||
|
|
||||||
|
- `tmp_polynomial` is a pointer to array of `n` `double`s, that is used to store coefficients of polynomial, resulting during simplification of interpolation polynomial summands.
|
||||||
|
|
||||||
|
## Example
|
||||||
|
|
||||||
|
Build and run application:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
gcc main.c
|
||||||
|
./a.out
|
||||||
|
```
|
||||||
|
|
||||||
|
### Input/output
|
||||||
|
|
||||||
|
For input n = 3 and the following dots
|
||||||
|
|
||||||
|
```plain
|
||||||
|
1 5
|
||||||
|
2 3
|
||||||
|
4 8
|
||||||
|
```
|
||||||
|
|
||||||
|
Output is
|
||||||
|
|
||||||
|
```plain
|
||||||
|
Newton polynomial form:
|
||||||
|
5 - 2*(x-1) + 1.5*(x-1)*(x-2)
|
||||||
|
Simplified coefficients array (starting from 0 upto n-1 power):
|
||||||
|
10 -6.5 1.5
|
||||||
|
Polynomial in standart form:
|
||||||
|
10 - 6.5*x + 1.5*x^2
|
||||||
|
```
|
||||||
|
|
||||||
|
### Illustrations
|
||||||
|
|
||||||
|
#### Example 1
|
||||||
|
|
||||||
|
<img src="./img/console.png" />
|
||||||
|
|
||||||
|
<img src="./img/wolfram.png" />
|
||||||
|
|
||||||
|
<img src="./img/plot.png" />
|
||||||
|
|
||||||
|
#### Example 2
|
||||||
|
|
||||||
|
<img src="./img/console2.png" />
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
<img src="./img/console3.png" />
|
||||||
|
|
||||||
|
<img src="./img/wolfram2.png" />
|
||||||
|
|
||||||
|
<img src="./img/plot2.png" />
|
BIN
img/console.png
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
img/console2.png
Normal file
After Width: | Height: | Size: 53 KiB |
BIN
img/console3.png
Normal file
After Width: | Height: | Size: 51 KiB |
BIN
img/plot.png
Normal file
After Width: | Height: | Size: 78 KiB |
BIN
img/plot2.png
Normal file
After Width: | Height: | Size: 206 KiB |
BIN
img/wolfram.png
Normal file
After Width: | Height: | Size: 83 KiB |
BIN
img/wolfram2.png
Normal file
After Width: | Height: | Size: 145 KiB |
26
input.py
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
import sys
|
||||||
|
import math
|
||||||
|
|
||||||
|
try:
|
||||||
|
n = int(sys.argv[1])
|
||||||
|
except:
|
||||||
|
n = 5
|
||||||
|
|
||||||
|
print(n)
|
||||||
|
|
||||||
|
def f(x: int) -> int:
|
||||||
|
"""
|
||||||
|
f(x) = sum with i from 0 to n-1 (i+1)*x^i
|
||||||
|
|
||||||
|
E.g. f(x) = 5x^4 + 4x^3 + 3x^2 + 2x + 1
|
||||||
|
"""
|
||||||
|
|
||||||
|
res: int = 0
|
||||||
|
|
||||||
|
for i in range(n):
|
||||||
|
res += (i+1) * pow(x, i)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
for i in range(n):
|
||||||
|
print(i, math.sin(i))
|
119
main.c
@ -16,16 +16,16 @@ double fabs(double x)
|
|||||||
array x stands for x
|
array x stands for x
|
||||||
number i stands for index of evaluated difference (from 0)
|
number i stands for index of evaluated difference (from 0)
|
||||||
number d stands for order of difference (from 0)
|
number d stands for order of difference (from 0)
|
||||||
example: https://shorturl.at/tBCPS */
|
example: https://en.wikipedia.org/wiki/Newton_polynomial#Examples */
|
||||||
double div_diff(double *y, double *x, unsigned int i, unsigned int d)
|
double div_diff(double *y, double *x, unsigned i, unsigned d)
|
||||||
{
|
{
|
||||||
return (y[i] - y[i - 1]) / (x[i] - x[i - d]);
|
return (y[i] - y[i - 1]) / (x[i] - x[i - d]);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Evaluates divided differences of n values - array of some kind of derivatives with big enough dx
|
/* Evaluates divided differences of n values - array of some kind of derivatives with big enough dx
|
||||||
Example: https://shorturl.at/tBCPS
|
Example: https://en.wikipedia.org/wiki/Newton_polynomial#Examples
|
||||||
Warning: result is evaluated in `double *y` array */
|
Warning: result is evaluated in `double *y` array */
|
||||||
double *div_diff_es(double *x, double *y, unsigned int n)
|
double *div_diff_es(double *x, double *y, unsigned n)
|
||||||
{
|
{
|
||||||
for (int i = 1; i < n; i++) // first element remains unchanged
|
for (int i = 1; i < n; i++) // first element remains unchanged
|
||||||
for (int j = n - 1; j >= i; j--) // evaluate from the end of array, decreacing number of step every repeation
|
for (int j = n - 1; j >= i; j--) // evaluate from the end of array, decreacing number of step every repeation
|
||||||
@ -38,66 +38,35 @@ double *div_diff_es(double *x, double *y, unsigned int n)
|
|||||||
Coeficients of simplified polynomial computation
|
Coeficients of simplified polynomial computation
|
||||||
*/
|
*/
|
||||||
|
|
||||||
void simplify_polynomial(double *res, double *rev_el_coef, double *x, unsigned int n)
|
/* Simplifies Newton polynomial with `el_coef` array of divided differences,
|
||||||
|
and `x` as array of x coordinates of dots,
|
||||||
|
and `n` is number of elements of this sum */
|
||||||
|
void simplify_polynomial(double *res, double *el_coef, double *x, unsigned n)
|
||||||
{
|
{
|
||||||
for (int i = 0; i < n; i++)
|
double *tmp_polynomial // Temporary array for storage of coefficients of multiplication of (x-x_i) polynomial
|
||||||
if (rev_el_coef[i])
|
= (double *)malloc(sizeof(double) * n);
|
||||||
for (int j = 0; j <= i; j++)
|
for (int i = 1; i < n; i++)
|
||||||
res[i - j] += (j % 2 ? -1 : 1) * rev_el_coef[i] * compute_sum_of_multiplications_of_k(x, j, i);
|
tmp_polynomial[i] = 0;
|
||||||
}
|
tmp_polynomial[0] = 1; // Set polynomial to 1 to start multiplication with it
|
||||||
|
|
||||||
double compute_sum_of_multiplications_of_k(double *arr, unsigned int k, unsigned int n)
|
for (int i = 0; i < n; i++) // For each elemnt of sum
|
||||||
{
|
|
||||||
if (k == 0)
|
|
||||||
return 1;
|
|
||||||
|
|
||||||
if (k == 1 && n == 1)
|
|
||||||
return arr[0];
|
|
||||||
|
|
||||||
unsigned int *selected = (unsigned int *)malloc(sizeof(unsigned int) * k); // Indexes of selected for multiplication elements
|
|
||||||
|
|
||||||
int i = 0, // index of `arr` array
|
|
||||||
j = 0; // index of `selected` array
|
|
||||||
|
|
||||||
double sum = 0;
|
|
||||||
|
|
||||||
while (j >= 0)
|
|
||||||
{
|
{
|
||||||
if (i <= (n + (j - k)))
|
if (i > 0) // Start multiplication from second element of sum
|
||||||
{
|
mult_by_root(tmp_polynomial, x[i - 1], i - 1);
|
||||||
selected[j] = i;
|
|
||||||
|
|
||||||
if (j == k - 1)
|
for (int j = 0; j <= i; j++) // For each cumputed coefficient of i'th polynomial of sum
|
||||||
{
|
res[j] += el_coef[i] * tmp_polynomial[j]; // Add it, multiplied with divided difference, to sum
|
||||||
sum += mult_by_indexes(arr, selected, k);
|
|
||||||
i++;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
i = selected[j] + 1;
|
|
||||||
j++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
j--;
|
|
||||||
if (j >= 0)
|
|
||||||
i = selected[j] + 1;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
free(selected);
|
free(tmp_polynomial);
|
||||||
|
|
||||||
return sum;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
double mult_by_indexes(double *arr, unsigned int *indexes, unsigned int size)
|
/* `res` is an array of coefficients of polynomial, which is multiplied with (x - `root`) polynomial.
|
||||||
|
`power` is the power of `res` polynomial */
|
||||||
|
void mult_by_root(double *res, double root, unsigned power)
|
||||||
{
|
{
|
||||||
double res = 1;
|
for (int j = power + 1; j >= 0; j--)
|
||||||
for (int i = 0; i < size; i++)
|
res[j] = (j ? res[j - 1] : 0) - (root * res[j]); // coefficient is k_i-1 - root * k_i
|
||||||
res *= arr[indexes[i]];
|
|
||||||
|
|
||||||
return res;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
@ -105,7 +74,7 @@ double mult_by_indexes(double *arr, unsigned int *indexes, unsigned int size)
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
/* Prints interpolation polynomial in Newton notation */
|
/* Prints interpolation polynomial in Newton notation */
|
||||||
void print_newton_poly(double *f, double *x, unsigned int n)
|
void print_newton_poly(double *f, double *x, unsigned n)
|
||||||
{
|
{
|
||||||
printf("Newton polynomial form:\n");
|
printf("Newton polynomial form:\n");
|
||||||
for (int i = 0; i < n; i++)
|
for (int i = 0; i < n; i++)
|
||||||
@ -123,16 +92,16 @@ void print_newton_poly(double *f, double *x, unsigned int n)
|
|||||||
else if (f[i] < 0) // If it is the first summond and coefficient is below zero
|
else if (f[i] < 0) // If it is the first summond and coefficient is below zero
|
||||||
printf("-");
|
printf("-");
|
||||||
|
|
||||||
printf("%lf", fabs(f[i])); // Print coefficient without sign
|
printf("%g", fabs(f[i])); // Print coefficient without sign
|
||||||
|
|
||||||
for (int j = 0; j < i; j++) // For each (x-xi) bracket
|
for (int j = 0; j < i; j++) // For each (x-xi) bracket
|
||||||
{
|
{
|
||||||
if (x[j]) // If summond is not zero, print it
|
if (x[j]) // If summond is not zero, print it
|
||||||
{
|
{
|
||||||
if (x[j] > 0)
|
if (x[j] > 0)
|
||||||
printf("*(x-%lf)", x[j]);
|
printf("*(x-%g)", x[j]);
|
||||||
else
|
else
|
||||||
printf("*(x+%lf)", -x[j]);
|
printf("*(x+%g)", -x[j]);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
printf("*x");
|
printf("*x");
|
||||||
@ -145,16 +114,18 @@ void print_newton_poly(double *f, double *x, unsigned int n)
|
|||||||
printf("\n");
|
printf("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
unsigned int insert_n()
|
/* Returns inputed by user number of dots */
|
||||||
|
unsigned insert_n()
|
||||||
{
|
{
|
||||||
printf("Insert number of dots: ");
|
printf("Insert number of dots: ");
|
||||||
unsigned int n = 0;
|
unsigned n = 0;
|
||||||
scanf("%u", &n);
|
scanf("%u", &n);
|
||||||
|
|
||||||
return n;
|
return n;
|
||||||
}
|
}
|
||||||
|
|
||||||
void insert_coords(double *xes, double *yes, unsigned int n)
|
/* Reads pairs of x'es and y'es of n dots to corresponding array */
|
||||||
|
void insert_coords(double *xes, double *yes, unsigned n)
|
||||||
{
|
{
|
||||||
printf("Insert dots coordinates in the following format:\n<x> (space) <y>\nEach dot on new line\n");
|
printf("Insert dots coordinates in the following format:\n<x> (space) <y>\nEach dot on new line\n");
|
||||||
|
|
||||||
@ -168,19 +139,22 @@ void insert_coords(double *xes, double *yes, unsigned int n)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void print_array(double *arr, unsigned int n)
|
/* Prints array of n doubles */
|
||||||
|
void print_array(double *arr, unsigned n)
|
||||||
{
|
{
|
||||||
printf("Simplified coefficients array (starting from 0 upto n-1 power):\n");
|
printf("Simplified coefficients array (starting from 0 upto n-1 power):\n");
|
||||||
|
|
||||||
for (int i = 0; i < n; i++)
|
for (int i = 0; i < n; i++)
|
||||||
printf("%lf ", arr[i]);
|
printf("%g ", arr[i]);
|
||||||
|
|
||||||
printf("\n");
|
printf("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
void print_poly(double *coef, unsigned int n)
|
/* Prints interpolation polynomial in standart form
|
||||||
|
e.g. a*x^2 + b*x + c */
|
||||||
|
void print_poly(double *coef, unsigned n)
|
||||||
{
|
{
|
||||||
printf("Simplified polynom:\n");
|
printf("Polynomial in standart form:\n");
|
||||||
|
|
||||||
for (int i = 0; i < n; i++)
|
for (int i = 0; i < n; i++)
|
||||||
{
|
{
|
||||||
@ -191,15 +165,16 @@ void print_poly(double *coef, unsigned int n)
|
|||||||
printf("+ ");
|
printf("+ ");
|
||||||
else
|
else
|
||||||
printf("- ");
|
printf("- ");
|
||||||
else
|
else if (coef[i] < 0)
|
||||||
printf("-");
|
printf("-");
|
||||||
|
|
||||||
printf("%lf", fabs(coef[i]));
|
printf("%g", fabs(coef[i]));
|
||||||
if (i > 0)
|
if (i > 0)
|
||||||
printf("*x");
|
printf("*x");
|
||||||
if (i > 1)
|
if (i > 1)
|
||||||
printf("^%d ", i);
|
printf("^%d ", i);
|
||||||
else printf(" ");
|
else
|
||||||
|
printf(" ");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -224,6 +199,8 @@ int main()
|
|||||||
print_newton_poly(f, x, n);
|
print_newton_poly(f, x, n);
|
||||||
|
|
||||||
double *coefficients = (double *)malloc(sizeof(double) * n);
|
double *coefficients = (double *)malloc(sizeof(double) * n);
|
||||||
|
for (unsigned i = 0; i < n; i++)
|
||||||
|
coefficients[i] = 0;
|
||||||
|
|
||||||
simplify_polynomial(coefficients, f, x, n);
|
simplify_polynomial(coefficients, f, x, n);
|
||||||
|
|
||||||
@ -231,5 +208,9 @@ int main()
|
|||||||
|
|
||||||
print_poly(coefficients, n);
|
print_poly(coefficients, n);
|
||||||
|
|
||||||
|
free(x);
|
||||||
|
free(y);
|
||||||
|
free(coefficients);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
@ -13,25 +13,24 @@ double fabs(double x);
|
|||||||
Business logic
|
Business logic
|
||||||
*/
|
*/
|
||||||
|
|
||||||
double div_diff(double *y, double *x, unsigned int i, unsigned int d);
|
double div_diff(double *y, double *x, unsigned i, unsigned d);
|
||||||
double *div_diff_es(double *x, double *y, unsigned int n);
|
double *div_diff_es(double *x, double *y, unsigned n);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
User interface
|
User interface
|
||||||
*/
|
*/
|
||||||
|
|
||||||
unsigned int insert_n();
|
unsigned insert_n();
|
||||||
void print_newton_poly(double *f, double *x, unsigned int n);
|
void print_newton_poly(double *f, double *x, unsigned n);
|
||||||
void insert_coords(double *x, double *y, unsigned int n);
|
void insert_coords(double *x, double *y, unsigned n);
|
||||||
void print_array(double *arr, unsigned int n);
|
void print_array(double *arr, unsigned n);
|
||||||
void print_poly(double *coef, unsigned int n);
|
void print_poly(double *coef, unsigned n);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
Coeficients of simplified polynomial computation
|
Coeficients of simplified polynomial computation
|
||||||
*/
|
*/
|
||||||
|
|
||||||
void simplify_polynomial(double *res, double *rev_el_coef, double *x, unsigned int n);
|
void simplify_polynomial(double *res, double *el_coef, double *x, unsigned n);
|
||||||
double compute_sum_of_multiplications_of_k(double *x, unsigned int k, unsigned int n);
|
void mult_by_root(double *res, double root, unsigned step);
|
||||||
double mult_by_indexes(double *arr, unsigned int *indexes, unsigned int size);
|
|
||||||
|
|
||||||
#endif
|
#endif
|