Compare commits

..

1 Commits

Author SHA1 Message Date
75dce20390
idk, when i wrote it, but it somehow works 2022-05-24 23:27:04 +03:00
13 changed files with 293 additions and 301 deletions

1
.gitignore vendored
View File

@ -2,4 +2,3 @@ a.out
main main
.vscode .vscode
vgcore* vgcore*
output.txt

View File

@ -1,89 +1,3 @@
# Polynomial Interpolation # Polynomial Interpolation
ANSI C program which composes polynomial of n - 1 degree that passes through n dots. It presents it in Newton interpolation polynomial and monic form. ANSI C program which composes polynomial of n - 1 degree for n dots.
## Interface
Application accepts as standart input decimal below 2147483647 `n` as number of dots, followed by n dots in format: `<x> (space) <y>` on each line, where `x` is an abscisse and `y` is an ordinate of single dot. Dot coordinates must fit [2.22507e-308;1.79769e+308] range by modulo.
Result will be printed to standart output in the following format:
Newton polynomial form:
$$f_0 - f_1*(x-x_0) + ... + f_n(x-x_0)*(x-x_1)*...*(x-x_{n-1})$$
Simplified coefficients array (starting from 0 upto n-1 power):
$$a_0 a_1 ... a_{n-1} a_n$$
Polynomial in monic form:
$$a_0 - a_1*x + ... + a_{n-1}*x^(n-2) + a_n*x^(n-1)$$
Where $f_i$ is a divided difference of $y_1,...,y_i$, $a_i$ are coefficients of resulting monic polynomial
## Data structure
- `n` is an `unsigned int` variable, that is used to input and store number of dots
- `x` is a pointer to array of `n` `double`s, that is used to store abscisses of dots
- `y` is a pointer to array of `n` `double`s, that is used to store ordinates of dots
- `coefficients` is a pointer to array of `n` `double`s, that is used to store coefficients of monic interpolation polynomial
- `i`, `j` are `int` variables, those are used in loops as iterators
- `tmp_polynomial` is a pointer to array of `n` `double`s, that is used to store coefficients of polynomial, resulting during simplification of interpolation polynomial summands.
## Example
Build and run application:
```bash
gcc main.c
./a.out
```
### Input/output
For input n = 3 and the following dots
```plain
1 5
2 3
4 8
```
Output is
```plain
Newton polynomial form:
5 - 2*(x-1) + 1.5*(x-1)*(x-2)
Simplified coefficients array (starting from 0 upto n-1 power):
10 -6.5 1.5
Polynomial in standart form:
10 - 6.5*x + 1.5*x^2
```
### Illustrations
#### Example 1
<img src="./img/console.png" />
<img src="./img/wolfram.png" />
<img src="./img/plot.png" />
#### Example 2
<img src="./img/console2.png" />
or
<img src="./img/console3.png" />
<img src="./img/wolfram2.png" />
<img src="./img/plot2.png" />

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 206 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 145 KiB

View File

@ -1,26 +0,0 @@
import sys
import math
try:
n = int(sys.argv[1])
except:
n = 5
print(n)
def f(x: int) -> int:
"""
f(x) = sum with i from 0 to n-1 (i+1)*x^i
E.g. f(x) = 5x^4 + 4x^3 + 3x^2 + 2x + 1
"""
res: int = 0
for i in range(n):
res += (i+1) * pow(x, i)
return res
for i in range(n):
print(i, math.sin(i))

439
main.c
View File

@ -1,216 +1,319 @@
#include <stdio.h>
#include <stdlib.h>
#include "./polynominal_interpolation.h" #include "./polynominal_interpolation.h"
/* Utils */ /*
Utils
*/
double fabs(double x) int min(int a, int b)
{ {
return x > 0 ? x : -x; return (a + b - abs(a - b)) / 2;
}
int max(int a, int b)
{
return (a + b + abs(a - b)) / 2;
} }
/* /*
Newton interpolation polynomial Array utils
*/ */
/* Divided difference is evaluated for: arr *init(int n)
array y stands for f(x)
array x stands for x
number i stands for index of evaluated difference (from 0)
number d stands for order of difference (from 0)
example: https://en.wikipedia.org/wiki/Newton_polynomial#Examples */
double div_diff(double *y, double *x, unsigned i, unsigned d)
{ {
return (y[i] - y[i - 1]) / (x[i] - x[i - d]); arr *a = (arr *)malloc(sizeof(arr));
a->size = n;
a->p = (double *)malloc(sizeof(double) * n);
for (int i = 0; i < n; i++)
set(a, i, 0);
return a;
} }
/* Evaluates divided differences of n values - array of some kind of derivatives with big enough dx arr *resize(arr *a, int new_size)
Example: https://en.wikipedia.org/wiki/Newton_polynomial#Examples
Warning: result is evaluated in `double *y` array */
double *div_diff_es(double *x, double *y, unsigned n)
{ {
for (int i = 1; i < n; i++) // first element remains unchanged if (a->size == new_size)
for (int j = n - 1; j >= i; j--) // evaluate from the end of array, decreacing number of step every repeation return a;
y[j] = div_diff(y, x, j, i);
return y; double *new_p = (double *)malloc(sizeof(double) * new_size);
for (int i = 0; i < min(new_size, a->size); i++)
new_p[i] = get(a, i);
free(a->p);
for (int i = a->size; i < new_size; i++)
new_p = 0;
a->p = new_p;
a->size = new_size;
return a;
} }
/* int convert_addr(arr *a, int pos)
Coeficients of simplified polynomial computation
*/
/* Simplifies Newton polynomial with `el_coef` array of divided differences,
and `x` as array of x coordinates of dots,
and `n` is number of elements of this sum */
void simplify_polynomial(double *res, double *el_coef, double *x, unsigned n)
{ {
double *tmp_polynomial // Temporary array for storage of coefficients of multiplication of (x-x_i) polynomial pos = pos % a->size;
= (double *)malloc(sizeof(double) * n); if (pos < 0)
for (int i = 1; i < n; i++) pos = a->size + pos;
tmp_polynomial[i] = 0;
tmp_polynomial[0] = 1; // Set polynomial to 1 to start multiplication with it
for (int i = 0; i < n; i++) // For each elemnt of sum return pos;
{
if (i > 0) // Start multiplication from second element of sum
mult_by_root(tmp_polynomial, x[i - 1], i - 1);
for (int j = 0; j <= i; j++) // For each cumputed coefficient of i'th polynomial of sum
res[j] += el_coef[i] * tmp_polynomial[j]; // Add it, multiplied with divided difference, to sum
}
free(tmp_polynomial);
} }
/* `res` is an array of coefficients of polynomial, which is multiplied with (x - `root`) polynomial. double get(arr *a, int pos)
`power` is the power of `res` polynomial */
void mult_by_root(double *res, double root, unsigned power)
{ {
for (int j = power + 1; j >= 0; j--) pos = convert_addr(a, pos);
res[j] = (j ? res[j - 1] : 0) - (root * res[j]); // coefficient is k_i-1 - root * k_i
return a->p[pos];
} }
/* void set(arr *a, int pos, double val)
User Interface
*/
/* Prints interpolation polynomial in Newton notation */
void print_newton_poly(double *f, double *x, unsigned n)
{ {
printf("Newton polynomial form:\n"); pos = convert_addr(a, pos);
for (int i = 0; i < n; i++)
{ a->p[pos] = val;
if (f[i]) // If coefficient != 0
// printa(a, 1);
}
arr *add(arr *a, arr *b)
{
for (int i = 0; i < a->size; i++)
set(a, i, a->p[i] + b->p[i]);
return a;
}
arr *mult(arr *a, double mul)
{
arr *res = init(a->size);
for (int i = 0; i < a->size; i++)
set(res, i, a->p[i] * mul);
return res;
}
void printa(arr *a, int q)
{
if (q)
{ {
/* Coefficient sign and sum symbol */ for (int i = 0; i < a->size; i++)
if (i > 0 && f[i - 1]) // If it's not the first summond printf("%f ", get(a, i));
{ printf("\n");
if (f[i] > 0)
printf("+ ");
else
printf("- ");
}
else if (f[i] < 0) // If it is the first summond and coefficient is below zero
printf("-");
printf("%g", fabs(f[i])); // Print coefficient without sign return;
}
for (int j = 0; j < i; j++) // For each (x-xi) bracket printf("Array of size %d:\n", a->size);
{
if (x[j]) // If summond is not zero, print it for (int i = 0; i < a->size; i++)
printf("%5d ", i + 1);
printf("\n");
for (int i = 0; i < a->size; i++)
printf("%5.2f ", get(a, i));
printf("\n");
}
arr *arr_without_el(arr *a, int ex_pos)
{
arr *res = init(a->size - 1);
for (int i = 0, pos = 0; i < a->size; i++)
{
if (i == ex_pos)
continue;
set(res, pos, a->p[i]);
pos++;
}
return res;
}
arr *reverse(arr *a)
{
arr *res = init(a->size);
for (int i = 0; i < a->size; i++)
set(res, i, a->p[a->size - 1 - i]);
return res;
}
void free_arr(arr *a)
{
free(a->p);
free(a);
}
/*
Business logic
*/
int has_comb(int *arr, int n, int k)
{
if (n == k)
return 0;
int pos = k - 1;
if (arr[pos] == n - 1)
{
if (k == 1)
return 0;
while ((pos > 0) && arr[pos] == n - 1)
{ {
if (x[j] > 0) pos--;
printf("*(x-%g)", x[j]); arr[pos]++;
else
printf("*(x+%g)", -x[j]);
} }
else
printf("*x");
}
printf(" "); for (int i = pos + 1; i < k; i++)
arr[i] = arr[i - 1] + 1;
if (arr[0] > n - k)
return 0;
} }
} else
arr[pos]++;
printf("\n"); return 1;
} }
/* Returns inputed by user number of dots */ int mult_by_index(arr *a, int *coords, int n)
unsigned insert_n()
{ {
printf("Insert number of dots: "); double res = 1;
unsigned n = 0; for (int i = 0; i < n; i++)
scanf("%u", &n); res = res * get(a, coords[i]);
return n; return res;
} }
/* Reads pairs of x'es and y'es of n dots to corresponding array */ int sum_of_mult_of_n_combinations(arr *a, int n)
void insert_coords(double *xes, double *yes, unsigned n)
{ {
printf("Insert dots coordinates in the following format:\n<x> (space) <y>\nEach dot on new line\n"); if (n == 0)
return 1;
for (int i = 0; i < n; i++) if (a->size == 1)
{
double x, y;
scanf("%lf %lf", &x, &y);
xes[i] = x;
yes[i] = y;
}
}
/* Prints array of n doubles */
void print_array(double *arr, unsigned n)
{
printf("Simplified coefficients array (starting from 0 upto n-1 power):\n");
for (int i = 0; i < n; i++)
printf("%g ", arr[i]);
printf("\n");
}
/* Prints interpolation polynomial in standart form
e.g. a*x^2 + b*x + c */
void print_poly(double *coef, unsigned n)
{
printf("Polynomial in standart form:\n");
for (int i = 0; i < n; i++)
{
if (coef[i])
{ {
if (i > 0 && coef[i - 1]) return a->p[0];
if (coef[i] > 0)
printf("+ ");
else
printf("- ");
else if (coef[i] < 0)
printf("-");
printf("%g", fabs(coef[i]));
if (i > 0)
printf("*x");
if (i > 1)
printf("^%d ", i);
else
printf(" ");
} }
}
printf("\n"); double acc = 0;
int coords[n];
for (int i = 0; i < n; i++)
coords[i] = i;
acc += mult_by_index(a, coords, n);
while (has_comb(coords, a->size, n))
acc += mult_by_index(a, coords, n);
return acc;
} }
/* int compose_denominator(arr *a, int pos)
Main
*/
int main()
{ {
unsigned n = insert_n(); double res = 1;
for (int i = 0; i < a->size; i++)
{
if (i == pos)
continue;
double *x = (double *)malloc(sizeof(double) * n), res = res * (get(a, pos) - get(a, i));
*y = (double *)malloc(sizeof(double) * n); }
return res;
insert_coords(x, y, n); }
double *f = div_diff_es(x, y, n); arr *compose_interpolation_polynomial(arr *xes, arr *ys)
{
print_newton_poly(f, x, n); arr *res = init(xes->size);
double *coefficients = (double *)malloc(sizeof(double) * n); arr *jcoef = init(xes->size);
for (unsigned i = 0; i < n; i++) for (int j = 0; j < xes->size; j++)
coefficients[i] = 0; {
int minus = (!(xes->size % 2) ? -1 : 1);
simplify_polynomial(coefficients, f, x, n); double denominator = compose_denominator(xes, j);
double multiplicator = get(ys, j);
print_array(coefficients, n);
arr *xis = arr_without_el(xes, j);
print_poly(coefficients, n);
for (int i = 0; i < xes->size; i++)
free(x); {
free(y); double k_sum = sum_of_mult_of_n_combinations(xis, xes->size - 1 - i);
free(coefficients); set(jcoef, i, minus * (multiplicator * k_sum) / denominator);
minus = -minus;
return 0; }
res = add(res, jcoef);
free_arr(xis);
}
free_arr(jcoef);
return res;
}
int main(int argc, char *argv[])
{
int quiet_mode = 0;
if (argc > 1 && argv[1][0] == '-' && argv[1][1] == 'q')
quiet_mode = 1;
if (!quiet_mode)
printf("Insert number of dots: ");
int n = 6;
scanf("%d", &n);
if (!quiet_mode)
printf("Insert dots coordinates in the following format:\n<x> (space) <y>\nEach dot on new line\n");
arr *xes = init(n);
arr *ys = init(n);
// set(xes, 0, 1);
// set(ys, 0, 1);
// set(xes, 1, 2);
// set(ys, 1, 2);
// set(xes, 2, 3);
// set(ys, 2, 3);
// set(xes, 3, 4);
// set(ys, 3, 4);
// set(xes, 4, 5);
// set(ys, 4, 5);
// set(xes, 5, 6);
// set(ys, 5, 6);
for (int i = 0; i < n; i++)
{
double x, y;
scanf("%lf %lf", &x, &y);
set(xes, i, x);
set(ys, i, y);
}
if (!quiet_mode)
{
printf("Inserted the following doths:\n");
printa(xes, 0);
printa(ys, 0);
}
arr *res = compose_interpolation_polynomial(xes, ys);
if (!quiet_mode)
printf("Resulting polynomial will have such coeficients:\n");
arr *reversed = reverse(res);
printa(reversed, quiet_mode);
free_arr(reversed);
free_arr(res);
free_arr(xes);
free_arr(ys);
return 0;
} }

View File

@ -1,36 +1,42 @@
#ifndef POLYNOMIAL_INTERPOLATION_H #ifndef POLYNOMIAL_INTERPOLATION_H
#define POLYNOMIAL_INTERPOLATION_H #define POLYNOMIAL_INTERPOLATION_H
#include <stdio.h>
#include <stdlib.h>
/* /*
Utils Utils
*/ */
double fabs(double x);
int min(int a, int b);
int max(int a, int b);
/*
Array utils
*/
typedef struct
{
int size;
double *p;
} arr;
arr *init(int n);
arr *resize(arr *a, int new_size);
int convert_addr(arr *a, int pos);
double get(arr *a, int pos);
void set(arr *a, int pos, double val);
arr *add(arr *a, arr *b);
arr *mult(arr *a, double mul);
void printa(arr *a, int q);
arr *arr_without_el(arr *a, int ex_pos);
arr *reverse(arr *a);
/* /*
Business logic Business logic
*/ */
double div_diff(double *y, double *x, unsigned i, unsigned d); int has_comb(int *arr, int n, int k);
double *div_diff_es(double *x, double *y, unsigned n); int mult_by_index(arr *a, int *coords, int n);
int sum_of_mult_of_n_combinations(arr *a, int n);
/* int compose_denominator(arr *a, int pos);
User interface arr *compose_interpolation_polynomial(arr *xes, arr *ys);
*/
unsigned insert_n();
void print_newton_poly(double *f, double *x, unsigned n);
void insert_coords(double *x, double *y, unsigned n);
void print_array(double *arr, unsigned n);
void print_poly(double *coef, unsigned n);
/*
Coeficients of simplified polynomial computation
*/
void simplify_polynomial(double *res, double *el_coef, double *x, unsigned n);
void mult_by_root(double *res, double root, unsigned step);
#endif #endif

View File

@ -1,4 +0,0 @@
#!/bin/sh
gcc main.c
python input.py $1 | tee /dev/fd/2 | ./a.out | tee output.txt