Moved PyQt-Plotter-Dialog to separate repository: https://git.dm1sh.ru/ADV/PyQt-Plotter-Dialog

This commit is contained in:
Dmitriy Shishkov 2023-10-30 16:46:25 +03:00
parent 3ad859e16c
commit ee04517e29
25 changed files with 0 additions and 1305 deletions

View File

@ -1,71 +0,0 @@
# PyQT graph plotter
## Интерфейс пакетов
- `graph_widget`
```python
graph = Graph(x, y, labels, mult_subplots=mult_plots)
#x,y-данные для графиков. x-вводится пользователем или подтягивается из бд
#y-формируется из введенного математического выражения
#labels- список наименований графиков
#mult_subplots=True/False отрисовка графиков в виде subplots или на одном plot
```
- `parser`
[parser/README.md](./parser/README.md)
- `plotter_dialog`
```python
from plotter_dialog import PlotterDialog, FUNCTION_NAMES
PlotterDialog(
variable_values: dict[str, np.ndarray] = {} # Значения для подстановки в переменные
variable_full_names: dict[str, str] = {} # Надписи для кнопок переменных и подсказок для них
function_full_names: dict[str, str] = FUNCTION_NAMES # То же самое для функций
)
FUNCTION_NAMES = {
"abs": "Модуль",
"acos": "Арккосинус",
"acosh": "Гиперболический арккосинус",
"acot": "Арккотангенс",
"asin": "Арксинус",
"asinh": "Гиперболический арксинус",
"atan": "Арктангенс",
"avg": "Среднее",
"cos": "Косинус",
"cosh": "Гиперболический косинус",
"cot": "Котангенс",
"exp": "Экспонента (e^x)",
"lg": "Десятичный логарифм",
"ln": "Натуральный логарифм",
"log2": "Двоичный логарифм",
"max": "Максимум",
"min": "Минимум",
"prod": "Произведение",
"sgn": "Знак",
"sin": "Синус",
"sinh": "Гиперболический синус",
"sqrt": "Квадратный корень",
"sum": "Сумма",
"tanh": "Гиперболический тангенс",
"tan": "Тангенс",
}
```
`variable_full_names` и `variable_values` должны иметь одни и те же ключи.
## Инструкции по запуску демо-версии
Выполнить в корневой папке:
```bash
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
python -m plotter_dialog
```

View File

@ -1,3 +0,0 @@
from .graph_widget import GraphWidget
__all__ = ("GraphWidget",)

View File

@ -1,67 +0,0 @@
from matplotlib.figure import Figure
class Graph:
def __init__(
self, x, y, labels, mult_subplots=0, xl="x", yl="y", linetype="k", lims=False
):
# словарь из настроек?
self.labels = labels
self.__x = x
self.__y = y
self.__fig = Figure(figsize=(5, 4), dpi=100)
self.__chb = mult_subplots
self.__ax = self.__fig.add_subplot()
self.draw_n_func_plot()
self.draw_subplots()
self.__ax.set_xlabel(xl)
self.__ax.set_ylabel(yl)
self.__ax.legend()
self.figure.tight_layout()
def add_vline(ax, x=0, ymin=0, ymax=1):
ax.axvline(x, ymin, ymax)
# принимаем плот и на нем же рисуем
def add_hline(
ax,
y=0,
xmin=0,
xmax=1,
):
ax.axhline(y, xmin, xmax)
def draw_n_func_plot(
self,
): # много графиков на одном холсте
if self.__chb == 0 and len(self.__x) > 1:
for i in range(len(self.__x)):
self.__ax.plot(self.__x[i], self.__y[i], label=self.labels[i])
#новое(старое) условие против проскока
if self.__chb == 0 and len(self.__x) == 1:
self.__ax.plot(self.__x[0], self.__y[0], label=self.labels[0])
def draw_subplots(
self,
):
if self.__chb == 1 and len(self.__x) > 1:
for i in range(len(self.__x)):
n = int(f"{len(self.__x)}1{i+1}")
axes = self.__fig.add_subplot(n)
axes.set_title(f"График №{i+1}")
axes.plot(self.__x[i], self.__y[i], label=self.labels[i])
#новое(старое) условие против проскока
if self.__chb ==1 and len(self.__x) == 1:
self.__ax.plot(self.__x[0], self.__y[0], label=self.labels[0])
@property
def figure(
self,
):
return self.__fig

View File

@ -1,24 +0,0 @@
from .graph import Graph
import matplotlib
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
from PyQt5 import QtWidgets
matplotlib.use("Qt5Agg")
class GraphWidget(QtWidgets.QWidget):
def __init__(self, x, y, labels, mult_plots=False):
super().__init__()
graph = Graph(x, y, labels, mult_subplots=mult_plots)
sc = FigureCanvasQTAgg(graph.figure)
# Create toolbar, passing canvas as first parament, parent (self, the MainWindow) as second.
toolbar = NavigationToolbar(sc, self)
layout = QtWidgets.QVBoxLayout()
layout.addWidget(toolbar)
layout.addWidget(sc)
self.setLayout(layout)

View File

@ -1,81 +0,0 @@
# Math expression parser
Math expression evaluation library. It supports most of useful math operations and functions. Expressions can contain variables which can be substituted with `int`s, `float`s or `numpy.ndarray`s.
## Example usage
```python
from parser import Parser
parser = Parser("(-b + sqrt(b^2-4a c))/(2a)")
parser.variables_names # {'c', 'a', 'b'}
parser.evaluate({"a": 1, "b": -3, "c": 2}) # 1.0
parser.evaluate({"a": [1, 1, 1], "b": [-5, -6, -9], "c": [6, 9, 20]}) # [2. 3. 4.]
```
## Expression syntax
Expression can contain numbers or variable names with functions applied to them, separated with operators or united with braces. Numbers do not support `*`-less multiplication with spaces. Variables must be separated by space.
Here are examples with `_` as space
| Wrong | Right |
|--|--|
| `2_a` | `2a` or `2*a` |
| `a_2` | `a*2` |
| `a_2_a` | `a*2*a` |
| `2_cos(a)` | `2cos(a)` or `2*cos(a)` |
| `cos(a)_2` | `cos(a)*2` |
| `aa` | `a*a` or `a_a` |
| - | `cos(a)cos(a)` or `cos(a)_cos(a)` or `cos(a)*cos(a)` |
Theese are supported:
Functions:
| name | math |
|--|--|
| `abs` | $\|x\|$ |
| `acos` | $\cos^{-1}(x)$ |
| `acosh` | $\cosh^{-1}(x)$ |
| `acot` | $\cot^{-1}(x)$ |
| `asin` | $\sin^{-1}(x)$ |
| `asinh` | $\sinh^{-1}(x)$ |
| `atan` | $\tan^{-1}(x)$ |
| `avg` | $\overline X$ |
| `cos` | $\cos(x)$ |
| `cosh` | $\cosh(x)$ |
| `cot` | $\cot(x)$ |
| `exp` | $\exp(x)$ |
| `inf` | $\inf(X)$ |
| `lg` | $\lg(x)$ |
| `ln` | $\ln(x)$ |
| `log10` | $\log_{10}(x)$ |
| `log2` | $\log_2(x)$ |
| `max` | $\sup(X)$ |
| `min` | $\inf(X)$ |
| `prod` | $\displaystyle \prod_{i=0}^n x_i$ |
| `sgn` | $sgn(x)$ |
| `sign` | $sgn(x)$ |
| `sin` | $\sin(x)$ |
| `sinh` | $\sinh(x)$ |
| `sqrt` | $\sqrt{x}$ |
| `sum` | $\displaystyle\sum_{i=0}^n x_i$ |
| `sup` | $\sup(X)$ |
| `tan` | $\tan(x)$ |
| `tanh` | $\tanh(x)$ |
Operators: `+`, `-`, `*`, `/`, `^`, `%`
Braces: `()`, `[]`, `{}`
Floating points: `.`, `,`
Functions have only one argument, provided in braces. Operators must have two operands except minus (if it is the first character of equation or braced expression).
`avg`, `sum`, `max`, `sup`, `min`, `inf` and `prod` applied on `numpy.ndarray` produce `float`.
**! There is no error handling yet !**

View File

@ -1,21 +0,0 @@
from .parser import (
BinaryExpression,
Expression,
Operation,
Parser,
Token,
Tokenizer,
UnaryExpression,
ValueExpression,
)
__all__ = (
"BinaryExpression",
"Expression",
"Operation",
"Parser",
"Token",
"Tokenizer",
"UnaryExpression",
"ValueExpression",
)

View File

@ -1,16 +0,0 @@
from . import Parser
expression = input("Input math expression: ")
parser = Parser(expression)
print("Variables in your expression: " + ", ".join(parser.variables_names))
variables = {}
for key in parser.variables_names:
variables[key] = float(input(f"Input '{key}' variable value: "))
res = parser.evaluate(variables)
print(f"Evaluation result is: {res}")

View File

@ -1,6 +0,0 @@
import numpy as np
CONSTANTS = {
"e": np.e,
"pi": np.pi,
}

View File

@ -1,81 +0,0 @@
"""
Contains classes for expression tree representation and evaluation
"""
import abc
from collections.abc import Callable, Mapping
from .types import FunctionType, OperatorType, ValueType
class Expression(abc.ABC):
"""
Abstract base class for a single parsed expression as a tree data
structure. It also defines its public function for triggering
evaluation. Each child class sets `_evaluator` property to a
function that accepts variables values and produces numpy array.
"""
_evaluator: Callable[[Mapping[str, ValueType]], ValueType]
def evaluate(self, variables: Mapping[str, ValueType]):
return self._evaluator(variables)
class ValueExpression(Expression):
"""
This expression accepts variable name, numpy array or scalar number
and evaluates to either constant or variable value, corresponding
to its name.
"""
def __init__(self, a: str | ValueType):
self.__debug_a = a
if isinstance(a, str):
self._evaluator = lambda vars: vars[a]
else:
self._evaluator = lambda _: a
def __repr__(self):
return f"<{self.__debug_a}>"
class UnaryExpression(Expression):
"""
This expression accepts function with one argument and `Expression`
(value, unary or binary) and that function on expression, passed into it.
It is applied for named functions like `exp(a)`
"""
def __init__(self, function: FunctionType, a: Expression):
self.__debug_f = function.__name__
self.__debug_a = repr(a)
self._evaluator = lambda vars: function(a.evaluate(vars))
def __repr__(self):
return f"<{self.__debug_f}({self.__debug_a})>"
class BinaryExpression(Expression):
"""
This expression is similar to `UnaryExpression`, but accepts function
with two arguments and two expressions.
It is applied for math operators like `a - b`
"""
def __init__(
self,
function: OperatorType,
a: Expression,
b: Expression,
):
self.__debug_f = function.__name__
self.__debug_a = repr(a)
self.__debug_b = repr(b)
self._evaluator = lambda vars: function(a.evaluate(vars), b.evaluate(vars))
def __repr__(self):
return f"<{self.__debug_a} {self.__debug_f} {self.__debug_b}>"

View File

@ -1,113 +0,0 @@
from dataclasses import dataclass
import numpy as np
from .types import FunctionType, OperatorType, ValueType
# Additional functions that are not defined in numpy
def acot(x: ValueType):
return np.arctan(1 / x)
def cot(x: ValueType):
return 1 / np.tan(x)
# Function and operation names to evaluators mapping
functions: dict[str, FunctionType] = {
"abs": np.abs,
"acos": np.arccos,
"acosh": np.arccosh,
"acot": acot,
"asin": np.arcsin,
"asinh": np.arcsinh,
"atan": np.arctan,
"avg": np.average,
"cos": np.cos,
"cosh": np.cosh,
"cot": cot,
"exp": np.exp,
"inf": np.inf,
"lg": np.log10,
"ln": np.log,
"log10": np.log10,
"log2": np.log2,
"max": np.max,
"min": np.min,
"prod": np.prod,
"sgn": np.sign,
"sign": np.sign,
"sin": np.sin,
"sinh": np.sinh,
"sqrt": np.sqrt,
"sum": np.sum,
"sup": np.max,
"tanh": np.tanh,
"tan": np.tan,
}
operators: dict[str, OperatorType] = {
"+": np.add,
"-": np.subtract,
"*": np.multiply,
"/": np.divide,
"%": np.mod,
"^": np.float_power,
}
priorities: dict[str, int] = {
"(": 0,
"+": 1,
"-": 1,
"*": 2,
"/": 2,
"%": 2,
"^": 3,
"f": 4, # function
")": 5,
}
@dataclass
class Operation:
"""
Base class for math operation token (function, brace, operator).
It stores the way it is evaluated, evaluation priority and number
of arguments it supports.
"""
evaluator: (FunctionType | OperatorType | str)
priority: int
size: int
class FunctionOperation(Operation):
"""
`Operator` class factory that represents function
"""
def __init__(self, name: str):
super().__init__(functions[name], priorities["f"], 1)
class BraceOperation(Operation):
"""
`Operator` class factory that represents brace
"""
def __init__(self, name: str):
super().__init__(name, priorities[name], 0)
class OperatorOperation(Operation):
"""
`Operator` class factory that represents binary operator
"""
def __init__(self, name: str):
super().__init__(operators[name], priorities[name], 2)

View File

@ -1,104 +0,0 @@
from .expression import BinaryExpression, Expression, UnaryExpression, ValueExpression
from .operation import (
BraceOperation,
FunctionOperation,
Operation,
OperatorOperation,
priorities,
)
from .tokenizer import Token, Tokenizer
from .types import ValueType
from .constants import CONSTANTS
class Parser:
"""
Class that accepts math expression in its constructor,
parses it and provides `evaluate` method to substitue
variables values to it
"""
def __init__(self, input_expr: str):
self.input_expr = input_expr
self.variables_names: set[str] = set()
self._tokenize()
self._parse()
def _tokenize(self):
"""
Uses `Tokenizer` class for math expression splitting
"""
self.tokens = Tokenizer(self.input_expr)
def _parse(self):
"""
Generates an evaluation tree from tokens by utilizing two
stacks - one for values and one for operations. Values and
operations are placed into corresponding stacks, and when
possible, assempled into tree node.
"""
self.val_stack: list[Expression] = []
self.op_stack: list[Operation] = []
for t_val, t_type in self.tokens:
if t_type in (Token.Number, Token.Variable):
self.val_stack.append(ValueExpression(t_val))
if t_type == Token.Variable:
self.variables_names.add(t_val)
elif t_type == Token.Function:
self.op_stack.append(FunctionOperation(t_val))
elif t_type == Token.LBrace:
self.op_stack.append(BraceOperation("("))
elif t_type == Token.RBrace:
while len(self.op_stack) > 0 and not (
self.op_stack[-1].size == 0 and self.op_stack[-1].priority == 0
): # until next in stack is lbrace
self._do_one()
self.op_stack.pop() # pop lbrace
elif t_type == Token.Operator:
t_priority = priorities[t_val]
while (
len(self.op_stack) > 0 and self.op_stack[-1].priority > t_priority
):
self._do_one()
self.op_stack.append(OperatorOperation(t_val))
while len(self.op_stack) > 0:
self._do_one()
self._evaluator = self.val_stack[0].evaluate
self.__debug_expr = repr(self.val_stack)
def _do_one(self):
"""
Assembles one operation into `Expression` tree node that is stored
on value stack.
"""
op = self.op_stack.pop()
if op.size == 1:
a = self.val_stack.pop()
self.val_stack.append(UnaryExpression(op.evaluator, a))
elif op.size == 2:
b, a = self.val_stack.pop(), self.val_stack.pop() # inversed pop order
self.val_stack.append(BinaryExpression(op.evaluator, a, b))
def evaluate(self, variables: dict[str, ValueType]):
"""
Evaluates supplied to constructor expression with provided
variables values
"""
variables |= CONSTANTS
return self._evaluator(variables)
def __repr__(self):
return self.__debug_expr

View File

@ -1,114 +0,0 @@
from collections.abc import Generator
from dataclasses import dataclass
from typing import Optional
from .operation import functions, operators
from .types import Token, TokenType
@dataclass
class Tokenizer:
"""
Implements an iterator that yields `Token`s one by one.
It's grammatics is context-sensitive, but respects only a
single previous token.
"""
expression: str
def __iter__(self) -> Generator[TokenType, None, None]:
accumulator = ""
prev = None
for ch in self.expression:
if (breaker_type := Tokenizer.is_breaker(ch)) is not None:
if len(accumulator) > 0:
# ch is `(` after function name
if breaker_type == Token.LBrace and Tokenizer.is_function(
accumulator
):
yield accumulator, Token.Function
prev = Token.Function
accumulator = ""
else:
value, token_type = Tokenizer.detect_number(accumulator)
yield value, token_type
prev = token_type
accumulator = ""
# `(` after variable or number
if breaker_type == Token.LBrace:
yield "*", Token.Operator
prev = Token.Operator
# Unary minus case
if ch == "-" and (prev == Token.LBrace or prev is None):
yield 0, Token.Number
prev = Token.Number
# `(expr)(expr)` case
if breaker_type == Token.LBrace and prev == Token.RBrace:
yield "*", Token.Operator
prev = Token.Operator
if breaker_type != Token.Space:
yield ch, breaker_type
prev = breaker_type
else:
# Variable or function name after braced expr or variable and space
if prev == Token.RBrace or prev == Token.Variable:
yield "*", Token.Operator
prev = Token.Operator
# Floating point number
if ch in ",.":
accumulator += "."
continue
# Variable or function name after number
if (
not ch.isdecimal()
and (num := Tokenizer.is_number(accumulator)) is not None
):
yield num, Token.Number
yield "*", Token.Operator
prev = Token.Operator
accumulator = ""
accumulator += ch
if len(accumulator) > 0:
yield self.detect_number(accumulator)
@staticmethod
def is_breaker(character) -> Optional[Token]:
if character in operators:
return Token.Operator
if character in "([{":
return Token.LBrace
if character in ")]}":
return Token.RBrace
if character == " ":
return Token.Space
return None
@staticmethod
def is_number(string) -> Optional[float]:
try:
return float(string)
except ValueError:
return None
@staticmethod
def detect_number(string) -> TokenType:
if (num := Tokenizer.is_number(string)) is not None:
return num, Token.Number
else:
return string, Token.Variable
@staticmethod
def is_function(lexeme: str) -> bool:
if lexeme in functions:
return True
return False

View File

@ -1,23 +0,0 @@
from collections.abc import Callable
from enum import Enum, auto
import numpy as np
ValueType = int | float | np.ndarray
FunctionType = Callable[[ValueType], ValueType]
OperatorType = Callable[[ValueType, ValueType], ValueType]
class Token(Enum):
Variable = auto()
Number = auto()
Function = auto()
Operator = auto()
LBrace = auto()
RBrace = auto()
Space = auto()
TokenType = tuple[str | float, Token]

View File

@ -1,3 +0,0 @@
from .dialog import PlotterDialog
__all__ = ("PlotterDialog",)

View File

@ -1,23 +0,0 @@
import sys
from PyQt5.QtWidgets import QApplication
import numpy as np
from . import PlotterDialog
def main():
app = QApplication(sys.argv)
variables = [chr(ord("a") + i) for i in range(10)]
dlg = PlotterDialog(
variable_values={key: np.sort(np.random.random(10)) * 10 for key in variables},
variable_full_names={key: key.upper() for key in variables},
)
dlg.show()
sys.exit(app.exec())
main()

View File

@ -1,44 +0,0 @@
from collections.abc import Callable
from PyQt5.QtWidgets import QWidget, QVBoxLayout, QLabel, QPushButton
from .flow_layout import FlowLayout
class ButtonGroup(QWidget):
def __init__(
self,
category: str,
full_names: dict[str, str],
buttons_action: Callable[[str], None],
parent=None,
):
super().__init__()
self.layout = QVBoxLayout() # Создание основного лаяутв
Doplayout = FlowLayout()
label = QLabel(category)
self.layout.addWidget(label)
for button_name in full_names:
button = QPushButton(button_name, self)
button.setFixedWidth(80)
button.setToolTip(
full_names[button_name]
) # Создание подскачоки при наведении
button.clicked.connect(
lambda _, name=button_name: buttons_action( # ignore checked state with _
name
)
) # Назначение кнопочке действия
Doplayout.addWidget(button) # отрисовывание кнопок
Doplayout.setContentsMargins(0, 0, 0, 0)
self.layout.addLayout(Doplayout)
self.layout.setContentsMargins(0, 0, 0, 0)
self.setLayout(self.layout)

View File

@ -1,27 +0,0 @@
FUNCTION_NAMES = {
"sin": "Синус",
"cos": "Косинус",
"tan": "Тангенс",
"cot": "Котангенс",
"abs": "Модуль",
"exp": "Экспонента (e^x)",
"sqrt": "Квадратный корень",
"ln": "Натуральный логарифм",
"lg": "Десятичный логарифм",
"log2": "Двоичный логарифм",
"sgn": "Знак",
"asin": "Арксинус",
"acos": "Арккосинус",
"atan": "Арктангенс",
"acot": "Арккотангенс",
"sinh": "Гиперболический синус",
"cosh": "Гиперболический косинус",
"tanh": "Гиперболический тангенс",
"acosh": "Гиперболический арккосинус",
"asinh": "Гиперболический арксинус",
"sum": "Сумма",
"prod": "Произведение",
"min": "Минимум",
"avg": "Среднее",
"max": "Максимум",
}

View File

@ -1,247 +0,0 @@
from PyQt5.QtCore import Qt, QTimer
from PyQt5.QtWidgets import (
QDialog,
QVBoxLayout,
QScrollArea,
QWidget,
QPushButton,
QLineEdit,
QMessageBox,
QHBoxLayout,
QCheckBox,
)
import numpy as np
from .button_group import ButtonGroup
from .constants import FUNCTION_NAMES
from .graph_requester import GraphRequester
from .utils import size
from parser import Parser
from graph_widget import GraphWidget
class PlotterDialog(QDialog):
focused_line_edit = None
def __init__(
self,
variable_values: dict[str, np.ndarray] = {},
variable_full_names: dict[str, str] = {},
function_full_names: dict[str, str] = FUNCTION_NAMES,
):
super().__init__()
self.variable_values = variable_values
self.setWindowTitle("Графопостроитель")
layout_boss = QVBoxLayout() # главный лояут
self.scroll = QScrollArea()
self.scroll.verticalScrollBar().rangeChanged.connect(self.scroll_bottom)
scrollWidget = QWidget()
self.scroll.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOn)
self.inputs_layout = QVBoxLayout() # лаяут первой трети
self.inputs_layout.addStretch(1)
self.num_of_input = 0 # инициализация первого графика
self.add_input()
QTimer.singleShot(0, self.focus_first_input)
scrollWidget.setLayout(self.inputs_layout)
self.scroll.setWidgetResizable(True)
self.scroll.setWidget(scrollWidget)
layout_boss.addWidget(self.scroll)
Button_make_fun_button = QPushButton("+")
Button_make_fun_button.clicked.connect(self.add_input)
Button_make_fun_button.setFixedWidth(80)
layout_boss.addWidget(Button_make_fun_button, alignment=Qt.AlignRight)
layout_boss.addWidget(
ButtonGroup(
"Переменные",
full_names=variable_full_names,
buttons_action=self.insert_variable,
)
)
layout_boss.addWidget(
ButtonGroup(
"Функции",
full_names=function_full_names,
buttons_action=self.insert_function,
)
)
layout_boss.addSpacing(10)
buttons_layout = QHBoxLayout()
buttons_layout.setDirection(QHBoxLayout.RightToLeft)
submit_button = QPushButton("Построить")
reset_button = QPushButton("Сброс")
submit_button.clicked.connect(self.plot)
reset_button.clicked.connect(self.reset)
submit_button.setDefault(True)
buttons_layout.addWidget(submit_button)
buttons_layout.addWidget(reset_button)
self.subplots_checkbox = QCheckBox("Рисовать графики на отдельных осях")
buttons_layout.addWidget(self.subplots_checkbox)
buttons_layout.addStretch(1)
layout_boss.addLayout(buttons_layout)
self.setLayout(layout_boss)
def add_input(self):
self.num_of_input += 1
graph_requester = GraphRequester(self.num_of_input)
for line_edit in (graph_requester.LineEditX, graph_requester.LineEditY):
line_edit.focused_in.connect(
lambda line_edit=line_edit: self.set_focused_line_edit(line_edit)
)
graph_requester.LineEditGraf.focused_in.connect(
lambda: self.set_focused_line_edit(None)
)
self.inputs_layout.insertWidget(self.inputs_layout.count() - 1, graph_requester)
graph_requester.LineEditGraf.setFocus()
def set_focused_line_edit(self, line_edit: QLineEdit | None):
self.focused_line_edit = line_edit
def scroll_bottom(self):
self.scroll.verticalScrollBar().setValue(
self.scroll.verticalScrollBar().maximum()
)
def insert_string(self, string: str, string_cursor_padding=-1):
line_edit = self.focused_line_edit
if line_edit is None:
dlg = QMessageBox(
QMessageBox.Warning,
"Ошибка",
"Выберите поле ввода выражения",
)
dlg.exec()
return
cusor_pos = line_edit.cursorPosition()
text = line_edit.text()
if string_cursor_padding < 1:
string_cursor_padding = len(string)
line_edit.setText(text[:cusor_pos] + string + text[cusor_pos:])
line_edit.setCursorPosition(cusor_pos + string_cursor_padding)
self.scroll.ensureWidgetVisible(line_edit)
line_edit.setFocus()
def insert_variable(self, name: str):
self.insert_string(f" {name} ")
def insert_function(self, name: str):
string = f" {name}()"
self.insert_string(string, len(string) - 1) # len - 1 for cursor between braces
def plot(self):
xs, ys, labels = [], [], []
for i in range(self.inputs_layout.count()):
graph_requester = self.inputs_layout.itemAt(i).widget()
if graph_requester is not None:
x_expr = graph_requester.LineEditX.text()
y_expr = graph_requester.LineEditY.text()
label = graph_requester.LineEditGraf.text()
if len(x_expr) * len(y_expr) == 0:
dlg = QMessageBox(
QMessageBox.Warning,
"Ошибка",
f'График "{label}" не задан',
)
dlg.exec()
return
x = Parser(x_expr).evaluate(self.variable_values)
y = Parser(y_expr).evaluate(self.variable_values)
if size(x) != size(y):
dlg = QMessageBox(
QMessageBox.Critical,
"Ошибка",
"\n\n".join(
(
"Выражения имеют разную размерность",
f'y: "{y}" -> {size(y)}',
f'x: "{x}" -> {size(x)}',
)
),
)
dlg.exec()
graph_requester.LineEditY.setFocus()
return
xs.append(x)
ys.append(y)
labels.append(label)
mult_subplots = self.subplots_checkbox.isChecked()
self.graph = GraphWidget(xs, ys, labels, mult_plots=mult_subplots)
self.graph.show()
def reset(self):
dlg = QMessageBox(
QMessageBox.Question,
"Очистка",
"Вы уверены, что хотите очистить все введённые выражения?",
buttons=QMessageBox.Yes | QMessageBox.No,
)
res = dlg.exec()
if res != QMessageBox.Yes:
return
while self.inputs_layout.count() > 0:
widget = self.inputs_layout.takeAt(0).widget()
if widget is not None:
widget.setParent(None)
self.focused_line_edit = None
self.num_of_input = 0
self.add_input()
def focus_first_input(self):
first_graph_request = self.inputs_layout.itemAt(0).widget()
if first_graph_request is not None:
first_graph_request.LineEditGraf.setFocus()

View File

@ -1,147 +0,0 @@
#############################################################################
##
## Copyright (C) 2013 Riverbank Computing Limited.
## Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
## All rights reserved.
##
## This file is part of the examples of PyQt.
##
## $QT_BEGIN_LICENSE:BSD$
## You may use this file under the terms of the BSD license as follows:
##
## "Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are
## met:
## * Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimer.
## * Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in
## the documentation and/or other materials provided with the
## distribution.
## * Neither the name of Nokia Corporation and its Subsidiary(-ies) nor
## the names of its contributors may be used to endorse or promote
## products derived from this software without specific prior written
## permission.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
## "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
## LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
## A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
## OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
## THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."
## $QT_END_LICENSE$
##
#############################################################################
from PyQt5 import QtCore, QtWidgets
class FlowLayout(QtWidgets.QLayout):
def __init__(self, parent=None, margin=-1, hspacing=-1, vspacing=-1):
super(FlowLayout, self).__init__(parent)
self._hspacing = hspacing
self._vspacing = vspacing
self._items = []
self.setContentsMargins(margin, margin, margin, margin)
def __del__(self):
del self._items[:]
def addItem(self, item):
self._items.append(item)
def horizontalSpacing(self):
if self._hspacing >= 0:
return self._hspacing
else:
return self.smartSpacing(QtWidgets.QStyle.PM_LayoutHorizontalSpacing)
def verticalSpacing(self):
if self._vspacing >= 0:
return self._vspacing
else:
return self.smartSpacing(QtWidgets.QStyle.PM_LayoutVerticalSpacing)
def count(self):
return len(self._items)
def itemAt(self, index):
if 0 <= index < len(self._items):
return self._items[index]
def takeAt(self, index):
if 0 <= index < len(self._items):
return self._items.pop(index)
def expandingDirections(self):
return QtCore.Qt.Orientations(0)
def hasHeightForWidth(self):
return True
def heightForWidth(self, width):
return self.doLayout(QtCore.QRect(0, 0, width, 0), True)
def setGeometry(self, rect):
super(FlowLayout, self).setGeometry(rect)
self.doLayout(rect, False)
def sizeHint(self):
return self.minimumSize()
def minimumSize(self):
size = QtCore.QSize()
for item in self._items:
size = size.expandedTo(item.minimumSize())
left, top, right, bottom = self.getContentsMargins()
size += QtCore.QSize(left + right, top + bottom)
return size
def doLayout(self, rect, testonly):
left, top, right, bottom = self.getContentsMargins()
effective = rect.adjusted(+left, +top, -right, -bottom)
x = effective.x()
y = effective.y()
lineheight = 0
for item in self._items:
widget = item.widget()
hspace = self.horizontalSpacing()
if hspace == -1:
hspace = widget.style().layoutSpacing(
QtWidgets.QSizePolicy.PushButton,
QtWidgets.QSizePolicy.PushButton,
QtCore.Qt.Horizontal,
)
vspace = self.verticalSpacing()
if vspace == -1:
vspace = widget.style().layoutSpacing(
QtWidgets.QSizePolicy.PushButton,
QtWidgets.QSizePolicy.PushButton,
QtCore.Qt.Vertical,
)
nextX = x + item.sizeHint().width() + hspace
if nextX - hspace > effective.right() and lineheight > 0:
x = effective.x()
y = y + lineheight + vspace
nextX = x + item.sizeHint().width() + hspace
lineheight = 0
if not testonly:
item.setGeometry(QtCore.QRect(QtCore.QPoint(x, y), item.sizeHint()))
x = nextX
lineheight = max(lineheight, item.sizeHint().height())
return y + lineheight - rect.y() + bottom
def smartSpacing(self, pm):
parent = self.parent()
if parent is None:
return -1
elif parent.isWidgetType():
return parent.style().pixelMetric(pm, None, parent)
else:
return parent.spacing()

View File

@ -1,56 +0,0 @@
from PyQt5.QtWidgets import (
QVBoxLayout,
QHBoxLayout,
QLabel,
QPushButton,
QLineEdit,
QWidget,
)
from PyQt5.QtCore import pyqtSignal
class FocusNotifyingLineEdit(QLineEdit):
focused_in = pyqtSignal()
def focusInEvent(self, event):
self.focused_in.emit()
super(FocusNotifyingLineEdit, self).focusInEvent(event)
class GraphRequester(QWidget):
LineEditGraf: FocusNotifyingLineEdit
LineEditX: FocusNotifyingLineEdit
LineEditY: FocusNotifyingLineEdit
def __init__(self, nomer_grafika=1):
super().__init__()
layout = QVBoxLayout(self)
layout_x = QHBoxLayout()
layout_y = QHBoxLayout()
layout_close_and_name = QHBoxLayout()
self.LineEditGraf = FocusNotifyingLineEdit(f"график {nomer_grafika}")
NameX = QLabel("X")
NameY = QLabel("Y")
Name_Close = QPushButton("x")
self.LineEditX = FocusNotifyingLineEdit()
self.LineEditY = FocusNotifyingLineEdit()
layout_x.addWidget(NameX)
layout_x.addWidget(self.LineEditX)
layout_y.addWidget(NameY)
layout_y.addWidget(self.LineEditY)
Name_Close.clicked.connect(lambda: self.setParent(None))
layout_close_and_name.addWidget(self.LineEditGraf)
layout_close_and_name.addWidget(Name_Close)
layout.addLayout(layout_close_and_name) # Вложения названия и закрыть
layout.addLayout(layout_y) # Вложение
layout.addLayout(layout_x) # Вложение
layout.setContentsMargins(0, 0, 0, 0)
layout.addStretch(1)

View File

@ -1,10 +0,0 @@
import numpy as np
from parser.types import ValueType
def size(x: ValueType) -> int:
if isinstance(x, np.ndarray):
return x.size
else:
return 1

View File

@ -1,6 +0,0 @@
black==23.9.1
mypy==1.5.1
ruff==0.0.292
jedi-language-server==0.41.1
isort==5.12.0
pytest==7.4.2

View File

@ -1,4 +0,0 @@
numpy==1.26.0
pyqt5==5.15.2
pyqt5-qt5==5.15.2
matplotlib==3.8.0

View File

@ -1,14 +0,0 @@
from parser import Parser
def test_Parser():
parser = Parser("(-b + sqrt(b^2-4a c))/(2a)")
assert parser.variables_names == {"c", "a", "b"}
assert parser.evaluate({"a": 1, "b": -3, "c": 2}) == 1.0
assert all(
parser.evaluate({"a": [1, 1, 1], "b": [-5, -6, -9], "c": [6, 9, 20]})
== [2.0, 3.0, 4.0]
)