82 lines
2.3 KiB
Python

"""
Contains classes for expression tree representation and evaluation
"""
import abc
from collections.abc import Callable, Mapping
from .types import FunctionType, OperatorType, ValueType
class Expression(abc.ABC):
"""
Abstract base class for a single parsed expression as a tree data
structure. It also defines its public function for triggering
evaluation. Each child class sets `_evaluator` property to a
function that accepts variables values and produces numpy array.
"""
_evaluator: Callable[[Mapping[str, ValueType]], ValueType]
def evaluate(self, variables: Mapping[str, ValueType]):
return self._evaluator(variables)
class ValueExpression(Expression):
"""
This expression accepts variable name, numpy array or scalar number
and evaluates to either constant or variable value, corresponding
to its name.
"""
def __init__(self, a: str | ValueType):
self.__debug_a = a
if isinstance(a, str):
self._evaluator = lambda vars: vars[a]
else:
self._evaluator = lambda _: a
def __repr__(self):
return f"<{self.__debug_a}>"
class UnaryExpression(Expression):
"""
This expression accepts function with one argument and `Expression`
(value, unary or binary) and that function on expression, passed into it.
It is applied for named functions like `exp(a)`
"""
def __init__(self, function: FunctionType, a: Expression):
self.__debug_f = function.__name__
self.__debug_a = repr(a)
self._evaluator = lambda vars: function(a.evaluate(vars))
def __repr__(self):
return f"<{self.__debug_f}({self.__debug_a})>"
class BinaryExpression(Expression):
"""
This expression is similar to `UnaryExpression`, but accepts function
with two arguments and two expressions.
It is applied for math operators like `a - b`
"""
def __init__(
self,
function: OperatorType,
a: Expression,
b: Expression,
):
self.__debug_f = function.__name__
self.__debug_a = repr(a)
self.__debug_b = repr(b)
self._evaluator = lambda vars: function(a.evaluate(vars), b.evaluate(vars))
def __repr__(self):
return f"<{self.__debug_a} {self.__debug_f} {self.__debug_b}>"