МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Микрорадиоэлектроники и технологии радиоаппаратуры (МИТ)

ОТЧЕТ

по ИДЗ

по дисциплине «ОЭиР»

Тема: Исследование контактных явлений в структуре металл-

полупроводник

Вариант 25 14,6,3

Студент гр. 1181

Преподаватель

Шишков Д.А.

Ситникова М.Ф.

Санкт-Петербург 2023

Содержание

Задание4
1) Определить класс симметрии заданных материалов, построить прямую и
обратную элементарные ячейки заданных материалов. Определить размеры
Зоны Бриллюэна в направлениях Х, L, К5
1.1) Металл — золото (Au):5
1.2) Полупроводник - Антимонид индия (InSb)8
2) Определить концентрацию электронов для заданного металла из условия
касания зоны Бриллюэна и сферы Ферми и сделать суждение о применимости
теории свободных электронов
3) Рассчитать и построить зависимости средней длины свободного пробега,
времени релаксации и электропроводности от температуры для металла в
диапазоне температур (0,1 - 10) <i>Т</i> _D . Оценить степень дефектности металла по
заданной величине удельного сопротивления10
3.1) Исследование температурной зависимости длины свободного пробега10
3.2) Исследование влияния дефектов на время релаксации
3.3) Исследование температурной зависимости электропроводности и
теплопроводности металлов
3.4) Оценить степень дефектности металла по заданной величине удельного
сопротивления
4) Рассчитать и построить зависимость электропроводности от толшины
металлической пленки при заданной температуре. Определить минимально
возможную толшину металлизации17
5) Определить эффективную массу носителей заряда, их концентрацию и
степень вырожления электронно-лырочного газа в заланном собственном
полупроволнике в данном диапазоне температур. Рассчитать и построить
Зависимости концентрации, полвижности и электропроволности от
температуры для заданного примесного полупроводности от
5 1) Определить эффективную массу носителей заряда 19
5.2) Оценка степени вырожления электронного газа
5 3) Исследование зависимости концентрации носителей заряда от
температуры для собственного подупроводника 20
5 4) Исследование зависимости концентрации носителей заряда от
температуры для примесного полупроводника 21
5 5) Исследование зависимости полвижности от температуры для примесного
полупроволника
5 6) Исследование зависимости электропроводности от температуры для
лимесного полупроволника
6) Расснитать зависимости энергии Ферми и термоличаминеской работы выхода
иля примесного полупроволника от температуры
7) Построить энергетицескую лизграмму залациой пары металл-полупроволник
и рыбранном масштаба для слуцаев: баз смешения, при прямом и обратном
смещениях Расснитать рольтампериого узраждовистики контакта в данном
сисщениях, гассчитать вольтамперную зарактеристику контакта в данном
дианазоне температур

7.1) Энергетическая диаграмма	26
7.2) Вольт-амперная характеристика	27
8) Рассчитать концентрацию носителей заряда в заданном полупроводни	ике для
создания омического контакта к металлу	29
9) Сделать выводы и дать рекомендации по применению исследуемого к	онтакта
металл-полупроводник	30
Список литературы	32

Задание

Для заданной пары металл-полупроводник оценить кинетические свойства заданных материалов, рассчитать и построить энергетическую диаграмму и вольт-амперную характеристику контакта в заданном диапазоне температур, дать рекомендации по применению исследуемого контакта.

Таблица 1. Некоторые свойства металлов

						Удель	Темпер	оатура,	K	
No BAP.	Элеме нт	Струк тура	Атом ная масса	Пара метр решет ки, Å	Плотн ость, г/смЗ	ное сопро тивле ние, мкОм •см	Дебая (TD)	Ферм и (TF·1 0 ⁻⁴)	плавл ения (Тпл)	Работ а выход а ф, эВ
14	Au	ГЦК	196.9	4.08	19.28	2.2	165	6.39	1337	4.58

Таблица 2. Свойства собственных полупроводников

№ BAP.	Тип примес	Полупр оводни	Ширин а Эффективная Подвижность запрещ масса при 300К ⁴ области		Эффективная масса		жность 300К	Работа выхода,
	И	K	E _G (300 К), Эв	m"n/me	m"p/me	µп, см2·В1· c1	µр, см2∙В1∙ с1	JB
6	n	InSb	0.17	0.0133	0.6	76000	5000	4.75

Таблица 3. Концентрация п-и р-примесей в полупроводниках

№ вар.	3
концентрация примесей, м ⁻³	10 ²²

1) Определить класс симметрии заданных материалов, построить прямую и обратную элементарные ячейки заданных материалов. Определить размеры Зоны Бриллюэна в направлениях X, L, K.

1.1) Металл — золото (Аи):

Структура: Гранецентрированная кубическая решётка

Формула симметрии: 3L₄4L₃6L₂9PC

Класс симметрии: m3m

Так как формулы симметрии ГЦК и простой кубической решётки совпадают, на рис. 1-3 приведены изображения осей, плоскостей и центра симметрии для последнего

Рис. 1 Изображение осей симметрии кубической решётки

Рис. 2 Изображение плоскостей симметрии куба

Рис. З Изображение центра симметрии куба

Базисные вектора:

$$\vec{a}_1 = \frac{a}{2}[011]^T$$
, $\vec{a}_2 = \frac{a}{2}[101]^T$, $\vec{a}_2 = \frac{a}{2}[110]^T$

Подставляя параметр решётки a=4.08 Å

$$\vec{a}_1 = \begin{bmatrix} 0 \\ 2.04 \\ 2.04 \end{bmatrix} \hat{A}, \ \vec{a}_2 = \begin{bmatrix} 2.04 \\ 0 \\ 2.04 \end{bmatrix} \hat{A}, \ \vec{a}_3 = \begin{bmatrix} 2.04 \\ 2.04 \\ 0 \end{bmatrix} \hat{A}$$

Кристаллическая решётка по заданным векторам построена на рис. 4

Рис. 4 Тройка основных векторов для ГЦК решётки

Объём элементарной ячейки:

$$V = |\vec{a}_1 \cdot [\vec{a}_2 \times \vec{a}_3]| = \left| 0 \left(0^2 - \frac{a^2}{4} \right) - \frac{a}{2} \left(\frac{a}{2} \cdot 0 - \frac{a^2}{4} \right) + \frac{a}{2} \left(\frac{a^2}{4} - \frac{a}{2} \cdot 0 \right) \right| = \frac{a^3}{4} = 16.98 \, \text{\AA}^3$$

Базисные вектора обратной решётки:

$$\vec{a}_{i}^{*} = \frac{2\pi}{V} [\vec{a}_{j} \times \vec{a}_{k}], i \neq j \neq k; a^{*} = \frac{2\pi}{a} = \frac{2\pi}{4.08} = 1.54 \cdot 10^{10}$$
$$\vec{a}_{1}^{*} = \frac{2\pi}{V} \frac{a^{2}}{4} \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -1.54\\1.54\\1.54\\1.54 \end{bmatrix} \cdot 10^{10}, \vec{a}_{2}^{*} = \begin{bmatrix} -1.54\\1.54\\-1.54 \end{bmatrix} \cdot 10^{10}, \vec{a}_{3}^{*} = \begin{bmatrix} 1.54\\-1.54\\-1.54 \end{bmatrix} \cdot 10^{10}$$

Что соответствует ОЦК. Её изображение на рис. 5.

Рис. 5 Обратная решётка для ГЦК — ОЦК

Первая зона Бриллюэна (рис. 6):

Рис. 6 Первая зона Бриллюэна

Размеры зоны Бриллюэна по направлениям Х, L, K:

 $\Gamma X = \frac{a^*}{2} = 0.77 \cdot 10^{10}$ - центр верхнего квадрата, по направлению [001] $\Gamma L = \frac{a^* \sqrt{2}}{4} = 0.54 \cdot 10^{10}$ - центр шестиугольника, по направлению [111] $\Gamma K = \frac{a^* \cdot \sqrt{3}}{4} = 0.67 \cdot 10^{10}$ - середина грани соединяющей два шестиугольника, по направлению [101]

1.2) Полупроводник - антимонид индия (InSb)

Рис. 7 Антимонид индия

Структура: Гранецентрированная кубическая решётка

Формула симметрии: 3L₄4L₃6L₂9PC

Класс симметрии: m3m

Изображения осей, плоскостей и центра симметрии для последнего — см. рис. 1-3.

Базисные вектора:

$$\vec{a}_1 = \frac{a}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{a}_2 = \frac{a}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \vec{a}_3 = \frac{a}{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},$$
 считая, что постоянная решётки = 1

Для параметра решётки *a*=6.48 Å

$$\vec{a}_{1} = \begin{bmatrix} 3.24 \\ 3.24 \\ 0 \end{bmatrix} \mathring{A}, \ \vec{a}_{2} = \begin{bmatrix} 3.24 \\ 0 \\ 3.24 \end{bmatrix} \mathring{A}, \ \vec{a}_{3} = \begin{bmatrix} 0 \\ 3.24 \\ 3.24 \end{bmatrix} \mathring{A}$$

Кристаллическая решётка по заданным векторам изображена на рис. 4. Объём элементарной ячейки аналогично предыдущему пункту:

$$V = |\vec{a}_1 \cdot [\vec{a}_2 \times \vec{a}_3] = \frac{a^3}{4} = 68.02 \,\text{\AA}^3$$

Базисные вектора в обратном пространстве:

$$\vec{a}_{i}^{*} = \frac{2\pi}{V} [a_{j} \times a_{k}], i \neq j \neq k; a^{*} = \frac{2\pi}{a} = \frac{2\pi}{6.48 \text{ Å}} = 0.97 \cdot 10^{10}$$
$$a_{1}^{*} = \begin{bmatrix} -0.97\\0.97\\0.97\\0.97 \end{bmatrix} \cdot 10^{10}, a_{2}^{*} = \begin{bmatrix} -0.97\\0.97\\-0.97 \end{bmatrix} \cdot 10^{10}, a_{3}^{*} = \begin{bmatrix} 0.97\\-0.97\\-0.97 \end{bmatrix} \cdot 10^{10}$$

2) Определить концентрацию электронов для заданного металла из условия касания зоны Бриллюэна и сферы Ферми и сделать суждение о применимости теории свободных электронов.

Связь радиуса Ферми с концентрацией электронов можно выяснить из следующего выражения: $k_f = \sqrt[3]{3 \pi^2 n}$. С другой стороны введено условие касания сферы Ферми с границей зоны Бриллюэна. Из п. 1 известно, что наименьшие размеры она имеет по направлению *ГL*, следовательно радиус Ферми для вписанной сферы $k_f = \Gamma L = 0.54 \cdot 10^{10}$

Тогда концентрация электронов: $n = \frac{k_f^3}{3 \pi^2} = 5.32 \cdot 10^{27}$

Концентрацию свободных электронов в металле также можно определить пользуясь приближением слабой связи для:

 $n_0 = \frac{N \cdot Z}{V}$, где Z — его валентность, N — количество атомов в его элементарной ячейке, а V — её объём.

Для золота:

В элементарной ГЦК решётке N = 4 атома (см. рис. 8)

Рис. 8 Атомы элементарной ячейки ГЦК решётки

При Z = 1 $n_0 = \frac{4 \cdot 1}{16.98 \cdot 10^{-30}} = 2.36 \cdot 10^{29} \,\text{м}^{-3}$

При Z = 2 n_0 =4.72·10²⁹ M^{-3}

При Z = 3 n_0 =7.08·10²⁹ m^{-3} - наиболее частая

Вывод: Как видно, $n_0 > n$ для любой возможной валентности, следовательно, теория свободных электронов не применима. Тогда эффективную массу электрона примем равной массе свободного электрона $m' = m_e = 9.1 \cdot 10^{-31}$ кг. В сравнении со стандартным металлом Пиппарда, у которого плотность электронов $n_0 = 6 \cdot 10^{28}$, а радиус Ферми $k_f = 1.21 \cdot 10^6$, у золота они получаются большими $n_0 = 7.08 \cdot 10^{29} \, \text{м}^{-3}$, $k_f = 5.4 \cdot 10^9$.

3) Рассчитать и построить зависимости средней длины свободного пробега, времени релаксации и электропроводности от температуры для металла в диапазоне температур (0,1 - 10) *T*_D. Оценить степень дефектности металла по заданной величине удельного сопротивления.

3.1) Исследование температурной зависимости длины свободного пробега

Длина свободного пробега электронов в зависимости от температуры (если она много больше температуры Дебая, то происходит упругое рассеяние, иначе - неупругое) приблизительно рассчитывается согласно следующему выражению:

$$\lambda(T) = \begin{cases} \lambda_1(T), T \gg T_D \\ \lambda_1(T_D) \cdot \left(\frac{T_D}{T}\right)^5, T \ll T_D \end{cases}$$

Где $\lambda_1(T) = 50 a \frac{T_m}{T}$, $a = 4.08 \cdot 10^{-10}$ — параметр решётки, $T_m = 1337$ — температура

плавления $T_{\scriptscriptstyle D}$ =165 — температура Дебая.

 $\lambda(0.1\,T_{_D})$ =0.16 м, $\lambda(T_{_D})$ =0.17 мкм, $\lambda(T_{_{NI}})$ =0.02 мкм

Рис. 9 График зависимости длин свободного пробега от температуры *Вывод*: с ростом температуры длина свободного пробега действительно уменьшается.

3.2) Исследование влияния дефектов на время релаксации Время релаксации для рассеивания на дефектах: $\tau_d(T)$ Время релаксации для электрон-фононного рассеивания в зависимости от температуры: $\tau_f(T) = \frac{\lambda(T)}{v_F}$, где $v_F = \frac{h \cdot \sqrt[3]{3 \pi^2 n_0}}{2 \pi m'}$ — скорость электронов на поверхности Ферми. В последней формуле $h = 6.6237 \cdot 10^{-34}$ — постоянная Планка,

11

 $n_0 = 7.08 \cdot 10^{29}$ — концентрация носителей заряда, $m' = m_e = 9.1 \cdot 10^{-31}$ — эффективная масса электрона.

Тогда, согласно правилу Маттиссена суммарное время релаксации получается следующим: $\tau_{\Sigma}(T) = \frac{1}{\frac{1}{\tau_{\Sigma}(T)} + \frac{1}{\tau_{\Sigma}(T)}}$.

Оно справедливо если один из механизмов рассеяния преобладает над другим при *T* = 273 *K*.

$$\lambda(273) = 9.99 \cdot 10^{-8}$$
; $v_F = 3.19 \cdot 10^{6}$; $\tau_f(273) = 3.13 \cdot 10^{-14}$

Воспользуемся формулой для электропроводности: $\sigma(T) = \frac{1}{\rho(T)} = \frac{e^2 n_0 \tau_{\Sigma}(T)}{m'}$, где $e = 1.6 \cdot 10^{-19}$ — заряд электрона, $\rho(273) = 2.2 \cdot 10^{-8}$ — удельное сопротивление золота при Н.У. $\tau_{\Sigma}(273) = \frac{m'}{\rho(273)e^2 n_0} = 2.28 \cdot 10^{-15}$.

Подставив эти значения в правило Маттиссена, получим $\tau_d(273) = \left(\left(\tau_{\Sigma}(273) \right)^{-1} - \left(\tau_f(273) \right)^{-1} \right)^{-1} = 2.46 \cdot 10^{-15}.$

Вывод: преобладает механизм рассеивания на дефектах, так как его время релаксации меньше. В сравнении со стандартным металлом Пиппарда, у которого скорость электронов на поверхности Ферми $v_F = 1.4 \cdot 10^6$, у золота она выше: $v_F = 3.19 \cdot 10^6$.

Построим график зависимости времени релаксации от температуры для обоих механизмов рассеивания и суммарный, считая что на дефектах оно будет постоянным.

Рис. 10 График зависимости времени релаксации от температуры Для разных температур и времён релаксации для рассеяния на дефектах вычислим общее время релаксации по правилу Маттиссена:

Габлица 4.	Сумма	рное е	ремя	релаксац	iuu 1	$\tau_{\Sigma}(T,$	τ_d	
------------	-------	--------	------	----------	-------	--------------------	----------	--

$\tau_d T$	$0.1 \cdot T_D$	T_D	Тпл
10-12	10-12	$4.92 \cdot 10^{-14}$	$6.35 \cdot 10^{-15}$
10-13	10 ⁻¹³	$3.41 \cdot 10^{-14}$	$6 \cdot 10^{-15}$
10-14	10-14	$8.38 \cdot 10^{-15}$	$3.9 \cdot 10^{-15}$

Вывод: С ростом температуры суммарное время релаксации уменьшается.

3.3) Исследование температурной зависимости электропроводности и теплопроводности металлов

Теплопроводность металла можно определить исходя из закона Видемана-Франца: $\kappa(T) = L_0 T \sigma(T)$, где $L_0 = \frac{1}{3} \left(\frac{\pi k_0}{e} \right)^2 = 2.45 \cdot 10^{-8}$ — число Лоренца, в чьей формуле присутствует $k_0 = 1.38 \cdot 10^{-23}$ — постоянная Больцмана, а $\sigma(T)$ —

13

электропроводность, выраженная через время релаксации из предыдущего подпункта.

Для разных температур и времён релаксации для рассеяния на дефектах вычислим электропроводность и теплопроводность:

$ au_d \setminus T$	$0.1 \cdot T_D$	T_D	Тпл
10 ⁻¹²	$1.99 \cdot 10^{10}$	$0.98 \cdot 10^8$	$1.26 \cdot 10^8$
10 ⁻¹³	$1.99 \cdot 10^{9}$	$6.79 \cdot 10^8$	$1.2 \cdot 10^8$
10-14	$1.99 \cdot 10^8$	$1.67 \cdot 10^8$	$7.76 \cdot 10^7$

Таблица 5. Значения электропроводности $\sigma(T, \tau_d)$

Таблица 6. Значения иеплопроводности $\kappa(T, \tau_d)$

$ au_d \setminus T$	$0.1 \cdot T_D$	T _D	Тпл
10 ⁻¹²	$8.05 \cdot 10^3$	$3.96 \cdot 10^3$	$4.14 \cdot 10^3$
10 ⁻¹³	805	$2.75 \cdot 10^3$	$3.95 \cdot 10^3$
10-14	80.5	675	$2.54 \cdot 10^{3}$

Изобразим их на графиках:

 $\tau_d = 10^{-12}$

Рис. 12 Графики зависимости электропроводности и теплопроводности при

 $\tau_d = 10^{-13}$

 $\tau_d = 10^{-14}$

Рис. 14 Графики электропроводностей и теплопроводностей при различных τ_d *Вывод:* С ростом концентрации дефектов ($N \sim \frac{1}{\tau_d}$) температурные зависимости электропроводности и теплопроводности «выпрямляются», вместе с чем также уменьшается их значение в каждой точке. При этом, с ростом температуры электропроводность убывает, а теплопроводность возрастает.

3.4) Оценить степень дефектности металла по заданной величине удельного сопротивления

Как было вычислено в подпункте 3.2, время релаксации для рассеивания на дефектах $\tau_d = 2.46 \cdot 10^{-15}$. Тогда количество дефектов в металле $N_{\partial e \phi} = \frac{1}{\tau_d} = 4.07 \cdot 10^{14}$. *Вывод:* В сравнении с концентрацией носителей заряда $n_0 = 7.08 \cdot 10^{29}$, количество дефектов меньше на 10 порядков, что можно назвать приемлемым значением.

4) Рассчитать и построить зависимость электропроводности от толщины металлической пленки при заданной температуре. Определить минимально возможную толщину металлизации.

Графики зависимости электропроводности плёнки от толщины $\rho_{n_i}(d)$ будут построены для двух значений параметра зеркальности $p_1 = 0$ и $p_2 = 0.5$ в диапазоне температур $T \gg T_D$.

В предыдущем пункте при $T = T_{nn}$ — температуре плавления была рассчитана длина свободного пробега $\lambda(T_{nn})=0.02 \text{ мкм}$. Удельное сопротивление объёмного образца $\rho=2.2\cdot 10^{-8}$.

Для «толстой плёнки» при параметре зеркальности p < 1 справедлива следующая формула: $\rho_{nn1}(\gamma, p) = \rho \left[1 + \frac{3}{8\gamma} (1-p) \right]$. Аналогично, для «тонкой плёнки»

$$\gamma \ll 1: \rho_{nn2}(\gamma, p) = \rho \left[\frac{4}{3 \gamma \left(\ln \left(\gamma^{-1} \right) + 0.423 \right)} \cdot \frac{(1-p)}{(1+p)} \right],$$
где $\gamma = \frac{d}{\lambda(T_{nn})}$

зеркальности 0

Рис. 16 График удельного сопротивления от толщины плёнки при параметре зеркальности 0.5

При p = 1 (весь импульс электрона по направлению тока сохраняется), размерный эффект отсутствует

Минимальную возможную толщину металлизации можно определить из вышеприведённых графиков, выбрав такую γ , что при заданном масштабе $\rho_1(\gamma, p)$ практически сольётся с ρ . Для данного металла это будет $\gamma=3$. Тогда толщина $d = \gamma \lambda(T_m) = 61.2$ нм

Вывод: тонкие плёнки обладают низкой электропроводностью, однако, уже начиная с толщины *d*=61.2*нм* плёнка из золота должна демонстрировать металлические свойства. При этом, при большем коэффициенте зеркальности поверхности, действительно, удельное сопротивление по мере уменьшения толщины плёнки возрастает в меньшей степени.

18

5) Определить эффективную массу носителей заряда, их концентрацию и степень вырождения электронно-дырочного газа в заданном собственном полупроводнике в данном диапазоне температур. Рассчитать и построить зависимости концентрации, подвижности и электропроводности от температуры для заданного примесного полупроводника.

5.1) Определить эффективную массу носителей заряда Из табл. 2 известно, что для полупроводника InSb эффективные массы электронов и «дырок» соответственно:

 m_n '=0.0133·9.1·10⁻³¹=1.21·10⁻³² кг и m_p '=0.6·9.1·10⁻³¹=5.46·10⁻³¹ кг.

5.2) Оценка степени вырождения электронного газа Зависимость энергии Ферми от температуры имеет следующий вид: $E_F(T) = \frac{E_G}{2} + \frac{3}{4}k_0T\ln\left(\frac{m_p'}{m_n'}\right)$, где $E_G = 0.17$ эВ — ширина запрещённой зоны. (отсчёт идёт от потолка валентной зоны (E_C). Соответствующее выражение для тепловой энергии: $E_T(T) = k_0T$. Их график представлен на рис. 17.

Рис. 17 График температурной зависимости энергии Ферми и тепловой энергии Как видно из графика, критерий вырожденности $E_F(T) > E_T(T)$ выполняется для всех рассматриваемых температур, следовательно в этих условиях, электронный газ является вырожденным. Это значит, что он описывается распределением

Ферми-Дирака: $f_a(E_n) = \frac{1}{\exp\left(\frac{E_n - E_F(T)}{kT}\right) + 1}$. Например, для T = 300 K, распределение

показано на рис. 18.

5.3) Исследование зависимости концентрации носителей заряда от температуры для собственного полупроводника

Зависимости концентрации электронов и дырок от температуры имеют следующий вид:

$$n_{0}(T) = 2\left(\frac{2\pi m_{n}' k_{0}T}{h^{2}}\right)^{\frac{3}{2}} \cdot \exp\left[\frac{E_{F}(T) - E_{G}}{k_{0}T}\right]$$
$$p_{0}(T) = 2\left(\frac{2\pi m_{p}' k_{0}T}{h^{2}}\right)^{\frac{3}{2}} \cdot \exp\left[-\frac{E_{F}(T)}{k_{0}T}\right]$$

Их график приведён на рис. 19.

5.4) Исследование зависимости концентрации носителей заряда от температуры для примесного полупроводника

В работе рассмотрена донорная примесь Те с энергией ионизации в кристаллической решётке антимонида индия $E_g = E_d = 0.003$ эВ. Её концентрация $N_d = 10^{22} \, \text{m}^{-3}$.

Тогда, концентрация электронов в ней равна $n_d(T) = \frac{2N_d}{1 + \sqrt{1 + \frac{8N_d}{2\left(\frac{2\pi m_p' k_0 T}{h^2}\right)^{\frac{3}{2}}}} \cdot \exp\left[\frac{E_g}{k_0 T}\right]}$

Кроме этого, справедливы аппроксимации:

$$n_{d1}(T) : \sqrt{\frac{1}{2}} N_d \left(\frac{2 \pi m_n'}{h^2}\right)^{\frac{3}{2}} (k_0 T)^{\frac{3}{4}} \cdot \exp\left[-\frac{E_g}{2 k_0 T}\right]$$
$$n_{d2}(T) = N_d$$

Тогда полная концентрация электронов донорного полупроводника будет суммой концентраций собственного и полученных от донорной примеси. $n(T)=n_0(T)+n_d(T)$

Рис. 20 График зависимости концентрации зарядов в примесном проводнике от

Рис. 21 График зависимости концентрации зарядов в примесном проводнике от

температуры

По графику определяются температуры перехода к собственной проводимости и истощения примесей: $T_s = 148 \ K$ (точка пересечения $n_{d1}(T)$ и n(T)) и $T_i = 366 \ K$ (момент, когда $n_{d1}(T)$ становится больше N_d). Таким образом, I — область примесной ионизации, II — область истощения, III — область собственной ионизации.

5.5) Исследование зависимости подвижности от температуры для примесного полупроводника

Аппроксимирующие выражения для электронной и дырочной проводимостей:

 $\mu_n = 76000 \cdot 10^{-4} \cdot \left(\frac{T}{300}\right)^{-2}, \qquad \mu_p = 5000 \cdot 10^{-4} \cdot \left(\frac{T}{300}\right)^{-2.7}, \qquad \text{где} \qquad \mu_{n300} = 7600 \, c \text{M}^2 \cdot B \cdot c \qquad \text{M}$

 μ_{p300} =5000 *см*²·*B*·*c* — подвижности при 300 К.

Их график приведён на рис. 22.

Рис. 22 График подвижностей электронов и дырок

5.6) Исследование зависимости электропроводности от температуры для примесного полупроводника

Электропроводность проводника выражается следующим образом:

Рис. 23 График электропроводности примесного полупроводника Вывод: ввиду вырожденности, электронный газ описывается распределением Ферми-Дирака. В собственном полупроводнике количество электронов и дырок равно, поэтому зависимости концентраций совпадают. Добавление донорной примеси увеличивает концентрацию электронов, однако, с ростом температуры они истощаются и полупроводник переходит к собственной ионизации. С ростом температуры за счёт ионизации, а значит увеличения количества носителей заряда, в отличие от металла, проводимость полупроводника растёт.

24

6) Рассчитать зависимости энергии Ферми и термодинамической работы выхода для примесного полупроводника от температуры.

Термодинамическая работа выхода для собственного полупроводника определяется следующим выражением:

$$\Phi_n(T) = \chi + E_F(T) = \chi + \frac{1}{2} E_G + \frac{3}{4} k_0 T \ln \left(\frac{m_p'}{m_n'} \right)$$
, где $E_F(T)$ — энергия Ферми из п. 5.2,

χ=*E*_{*c*}=4.665 э*B* − энергия сродства

Тогда расчёты

$$E_{F}(0.1T_{D}) = 1.43 \cdot 10^{-20} \, \mathcal{A} \approx = 0.09 \, \mathfrak{sB}; \, \Phi_{n}(0.1T_{D}) = 7.61 \cdot 10^{-19} \, \mathcal{A} \approx = 4.75 \, \mathfrak{sB}$$
$$E_{F}(T_{D}) = 2.01 \cdot 10^{-20} \, \mathcal{A} \approx; \, \Phi_{n}(T_{D}) = 7.67 \cdot 10^{-19} \cdot \mathcal{A} \approx$$
$$E_{F}(T_{nn}) = 6.63 \cdot 10^{-20} \, \mathcal{A} \approx; \, \Phi_{n}(T_{nn}) = 8.13 \cdot 10^{-19} \, \mathcal{A} \approx$$

Для примесного полупроводника, соответственно:

$$\begin{split} E_{F}(T) &= \frac{E_{C} + E_{d}}{2} + \frac{1}{2} k_{0} T \ln \left(\frac{N_{d}}{2N_{c}(T)} \right) \, \mathbb{H} \, \Phi_{n}(T) = \chi + k_{0} T \ln \left(\frac{N_{c}(T)}{N_{d}} \right), \\ \text{где } E_{c} &= E_{G}; \, E_{d} = E_{g}; \, N_{c}(T) = 2 \left(\frac{m_{n}' k_{0} T}{2 \, \pi h^{2}} \right)^{\frac{3}{2}} \end{split}$$

И расчёты:

$$E_{F}(0.1T_{D}) = 1.69 \cdot 10^{-20} \, \mathcal{A} \approx = 0.11 \, \mathfrak{B}; \, \Phi_{n}(0.1T_{D}) = 7.44 \cdot 10^{-19} \, \mathcal{A} \approx = 4.65 \, \mathfrak{B}$$
$$E_{F}(T_{D}) = 2.10 \cdot 10^{-20} \, \mathcal{A} \approx; \, \Phi_{n}(T_{D}) = 7.35 \cdot 10^{-19} \, \mathcal{A} \approx$$
$$E_{F}(T_{nn}) = 2.74 \cdot 10^{-20} \, \mathcal{A} \approx; \, \Phi_{n}(T_{nn}) = 7.11 \cdot 10^{-19} \, \mathcal{A} \approx$$

Вывод: в примесном полупроводнике энергия Ферми и работа выхода меньше, чем в собственном, но в обоих случаях растут по мере возрастания температуры.

7) Построить энергетическую диаграмму заданной пары металлполупроводник в выбранном масштабе для случаев: без смещения, при прямом и обратном смещениях. Рассчитать вольтамперную характеристику контакта в данном диапазоне температур.

7.1) Энергетическая диаграмма

Рис. 24 Энергетическая диаграмма металл-вакуум-полупроводник

Рис. 25 Энергетическая диаграмма металл-полупроводник

Вывод: Так как $\Phi_{Me} < \Phi_{nn}^{n}$, следовательно, наблюдается анти-барьер Шоттки, или омический контакт.

7.2) Вольт-амперная характеристика

В ходе построений было вычислено, что работа выхода из примесного полупроводника $\Phi_{nn}^{n} = 4.68 \ \text{эB}$, энергия контактной разности потенциалов $e \phi_{k} = \Phi_{me} - \Phi_{nn}^{n} = -0.1 \ \text{эB}.$

Тогда, согласно уравнению Ричардсона, плотность тока

$$j(U) = j_n - j_{me} = AT^2 \cdot \exp\left[-\frac{e \ \phi_k + eU}{kT}\right] - AT^2 \cdot \exp\left[-\frac{e \ \phi_k}{kT}\right] = j_s \left(\exp\left[\frac{eU}{kT}\right] - 1\right).$$

Где $j_s = AT^2 \cdot \exp\left[-\frac{e \ \phi_k}{kT}\right]$ - плотность тока насыщения.

Для трёх температур на рис. 28-30 приведены графики BAX.

Рис. 28 ВАХ контакта при *T* = 300 *K*

Рис. 30 ВАХ контакта при T = 50 K

Вывод: анти-барьер Шоттки виден и на ВАХ, где в области небольших напряжений выполняется закон Ома. Сопротивление в ней определяется только сопротивлением приконтактной области полупроводника.

8) Рассчитать концентрацию носителей заряда в заданном полупроводнике для создания омического контакта к металлу.

Как видно из п. 7, контакт Au-InSb образует анти-барьер Шоттки, поэтому дополнительно легированный буферный слой не требуется.

9) Сделать выводы и дать рекомендации по применению исследуемого контакта металл-полупроводник

В работе были исследованы металл золото (Au) и полупроводник антимонид индия (InSb). Оба материала имеют гранецентрированную кристаллическую решётку, характеристики каждой были исследованы в п. 1.

В п. 2 на основании вычисления концентрации свободных электронов было выяснено, что к металлу неприменима теория свободных электронов.

Золото является хорошим проводником, что было подтверждено в п. З, где была исследована температурная зависимость проводимости и связанные с ней характеристики и влияние на неё дефектов кристаллической решётки.

При этом, как показано в п. 4, при толщине менее 60 нм начинает сказываться размерный эффект — при отражении на неровностях теряется импульс по направлению движения электронов, из-за чего сильно возрастает сопротивление.

В п. 5 на основании заданных эффективных масс электронов и «дырок» было выяснено, что антимонид индия является вырожденным, а значит, должно использоваться распределение Ферми-Дирака. Однако, далее в расчётах использовались формулы для невырожденного случая. В собственном полупроводнике, действительно, концентрации электронов и «дырок» совпали.

С добавлением донорной примеси теллура (Те) при низких температурах концентрация электронов возрастает за счёт ионизации примесей, однако, по мере роста температуры они истощаются и уже при 366 К их вклад становится пренебрежимо мал. Проводимость полупроводника на несколько порядков меньше, чем у металла и возрастает по мере роста температуры.

В п. 6 было показано, что добавление примеси в полупроводник уменьшает работу выхода.

На основании энергетических диаграмм, построенных в п. 7 было выяснено, что золото и антимонид индия, легированных теллуром образуют омический контакт с высотой барьера $\Phi_{\rm g} = -0.1 \, {}_{3}B$ и энергией сродства полупроводника $\chi = 4.665 \, {}_{3}B$. Поэтому на вольт-амперной характеристике при небольших

30

напряжениях наблюдается прямой участок, подчиняющийся закону Ома. При этом, так как с ростом напряжении при прямом включении наблюдается значительный рост тока, а при обратном «запирание» диода.

Таким образом, полученный контакт можно использовать для соединения полупроводниковых приборов с металлическими выводами. Его удельное сопротивление получается порядка 10⁻¹⁴ Ом. Однако, уже при напряжениях порядка сотых долей вольта контакт становится выпрямляющим.

Список литературы

- 1. Ситникова М.В. Методические указания к решению задач на практических занятиях по дисциплине «Основы электроники и радиоматериалы», СпбГЭТУ «ЛЭТИ», 2021
- 2. Астанин В.В. Электронное строение и кристаллическая структура твердых тел. Учебное пособие. / Уфа: УГАТУ, 2007,- 132с.
- 3. Ашкрофт Н., Мермин Н. Физика твердого тела. Т.1. М.: Мир, 1979
- 4. Гольдберг Ю.А. Омический контакт металл--полупроводник AIIIBV: методы создания и свойства // Физика и техника полупроводников. 1994, вып (№) 10. С. 1681-1689