МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В. И. УЛЬЯНОВА (ЛЕНИНА)

кафедра РЭС

ОТЧЕТ

по практической работе № 3 по дисциплине «Инженерный дизайн РЭС» Тема: ОЭП № 5, 6, 7

Студент гр. 1181 Преподаватель Шишков Д. А. Нестеров А. В.

Санкт-Петербург 2025

1. БИБЛИОТЕЧНЫЙ КОМПОНЕНТ В ALTIUM DESIGNER

1.1. Размеры корпуса конденсатора

Согласно индивидуальному заданию на проектирование, типоразмер корпуса танталового конденсатора, для которого необходимо разработать посадочное место, условное графическое обозначение (УГО) и 3D-модель – «В». Его параметры указаны в таблице 1 с расшифровкой размеров на рис. 1.

Рисунок 1

Таблица 1

Размеры EIA	L, мм	W, мм	Н, мм	Р, мм	ТѠ, мм	ТН (мин.), мм	Масса, г
3528-21	3,5±0,2	2,8±0,2	1,9±0,2	0,8±0,3	$2,2{\pm}0,1$	0,7	0,065

1.2. Размеры созданных контактных площадок

Размеры контактных площадок (КП) определяются параметрами из пп. 1.1 (выбираются значения ближе к максимумам) и выступом за пределы корпуса Δ*X* для возможности ручного монтажа.

$$-Xsize = P + \Delta X = 0.8 + 0.2 + 0.4 = 1.4$$
 MM;

$$-$$
 Ysize = $Tw = 2,2 + 0,1 = 2,3$ MM.

Первая КП имеет форму скругленного прямоугольника для обозначения расположения положительного вывода компонента на проводящем рисунке ПП. Вторая – прямоугольника без скруглений, для отрицательного вывода.

1.3. Значение координаты Х для первой КП

Расстояние от центра КП до короткой стороны корпуса конденсатора вычисляется согласно следующему выражению:

$$X = Xsize/2 - \Delta X = 1,4/2 - 0,4 = 0,3$$
 MM.

1.4. Рисунки посадочного места в 2D-режиме просмотра

Посадочное место при слое M3 Тор Assy на первом плане показано на рис. 2. Для Тор Layer аналогичное изображение приведено на рис. 3.

Рисунок 2

1.5. Рисунок посадочного места в 3D-режиме просмотра

Рисунок посадочного места в 3D показан на рис. 4.

Рисунок 4

1.6. Рисунок группы Parameters из окна свойств компонента

На рис. 5 приведен скриншот группы Parameters со всеми добавленными пользовательскими параметрами.

Visible	Name	/ Value	Туре
	CI_BOM	*	STRING 🔻
	CI_Manufacturer	-55+125 °C	STRING
	CI_Manufacturer	Vishay	STRING
	CI_Tolerance	×	STRING
	CI_Value	*	STRING
	CI_Voltage	*	STRING
	PartNumber	*	STRING
	Pl_Mounting Style	SMD	STRING
	Pl_Package	Case B	STRING

Рисунок 5

1.7. Рисунок УГО

Скриншот с УГО из области его разработки с добавленными надписями параметров приведен на рис. 6.

1.8. Изображение панели Libraries с выбранной интегрированной

библиотекой

Посадочное место и УГО компонента объединены в интегрированную библиотеку. Ее описание приведено на рис. 7.

L	ibraries 🔻 🖶 🗙	
	Libraries Search Place	
	🕼 Capacitors-35.IntLib 🗸 …	
	肇 Symbol-35.SchLib	
	Capacitors-35.IntLib	
	Component Name 🛆 Library	
	1 components	
	+ C? =CI_Value	
	Model Name Model Type	•
	CASE-B-293D Footprint	
	'.Designator'	•

Рисунок 7

2. ЗД-МОДЕЛЬ КОМПОНЕНТА

2.1. Рисунок 3D-модели и его дерева из КОМПАС-3D

На рис. 8 приведен результат построения 3D-модели танталового конденсатора в виде ее изображения и дерева.

Рисунок 8

2.2. Рисунки посадочного места с подключенной 3D-моделью

Полученная модель подключена к библиотечному компоненту в слое M5 Top 3D. На рис. 9 приведен его вид в 2D-режиме просмотра при его выводе на первый план. На рис. 10, в 3D-режиме.

Рисунок 9

Рисунок 10

3. ЧЕРТЕЖ УСТАНОВКИ КОМПОНЕНТА

3.1. Рисунок установочного чертежа

Установочный чертеж танталового конденсатора без рамки приведен на рис. 11.

Рисунок 11