from __future__ import annotations import re from typing import Iterable, List, TypeVar import pandas as pd T = TypeVar("T") CLASSES = ("w", "d", "c", "t", "s", "h", "b", "l", "r") DISTRICTS_PREFIXES = ("мо ", "р-н","городское","лесхоз") COUNTRYSIDE_PREFIXES = ( "г", "п", "д", "гп", "рп", "кп", "пгт", "c", "хутор", " урочище") TERRITORY_PREFIXES = ( "тер.", " тер", "снт ", "ст ", "дск ", "днп ", "дпк ", "нп ", "пдк ", "т/б ", "садоводство", "массив", "хозя", "сад-во") STREET_PREFIXES = ( " ул", " бул", " пр", " ш", " пер", " дор", " маг", " наб", " пл", " просп", " туп", "шоссе", "лини", "аллея", "мост", " парк", "кольцо", "проезд", "съезд","переулок", "ул.", "бул.", "пр.", "ш.", "пер.", "дор.", "маг.", "наб.", "пл.", "просп.", "туп.") HOUSES_PREFIXES = ("д.", "уч.", "участок", "мкд", "тп","дом") BUILDING_PREFIXES = ("к.", "корп", 'стр.', "строение", "корпус") LETTER = ("лит.", "литера", " л.") def unfold_house_ranges(token: str) -> List[str]: addresses = [] pairs_strings = re.findall(r"([\d]+-[\d]+)", token) for pair_string in pairs_strings: a, b = pair_string.split("-") a, b = int(a), int(b) if b > a: addresses += [re.sub(r"([\d]+-[\d]+)", number, token) for number in map(str, range(a, b + 1))] else: token = token.replace("-", "/") if not addresses: addresses.append(token) return addresses def any_of_in(substrings: Iterable[str], string: str) -> bool: return any(map(lambda substring: substring in string, substrings)) def flatten(arr: Iterable[List[T]]) -> List[T]: return sum(arr, []) def find_room(token: pd.Series, pre_token: pd.Series) -> str: if re.search(r"пом\.?", token['obj']): return "r" return "" def find_litera(token: pd.Series, pre_token: pd.Series) -> str: if any_of_in(LETTER, token['obj'].lower()) \ or re.search(r"\d{1,3}([А-Я]|[а-я])( |$)", token['obj']): return "l" if (re.search(r"\b([А-Я]|[а-я]){1}$", token['obj']) \ and ("l" in pre_token['class'] or "h" in pre_token['class'])) \ and not (" ш" in token["obj"]) \ and not find_countryside(token, pre_token): return "l" return "" def find_building(token: pd.Series, pre_token: pd.Series) -> str: if re.search(r"\d", token['obj']): if any_of_in(BUILDING_PREFIXES, token['obj'].lower()) \ or "b" in pre_token['class'] and not ("h" in token['class']) \ or re.search(r"к\.* ?\d", token['obj']): return "b" return "" def find_house(token: pd.Series, pre_token: pd.Series) -> str: if re.search(r"\d{1,4}", token['obj']): if any_of_in(HOUSES_PREFIXES, token['obj'].lower()): return "h" if re.search(r"(д|д\.) ?\d{1,4} ?\/*\d* ?", token['obj']): return "h" if ("s" in pre_token['class'] or "h" in pre_token['class'] or "s" in token['class']) \ and not any_of_in(("-я", "-й", "-Я"), token['obj']) \ and not find_building(token, pre_token): return "h" return "" def find_street(token: pd.Series, pre_token: pd.Series) -> str: if any_of_in(STREET_PREFIXES, token['obj'].lower()) \ or re.search(r"[а-я]+ая", token['obj']): return "s" return "" def find_territory(token: pd.Series, pre_token: pd.Series) -> str: if any_of_in(TERRITORY_PREFIXES, token['obj'].lower()): return "t" return "" def find_countryside(token: pd.Series, pre_token: pd.Series) -> str: if any_of_in(COUNTRYSIDE_PREFIXES, token['obj'].lower()) \ and re.search(r"\b[гпдрпктc]{1,3}(\b|\. )", token['obj']) \ and not find_house(token, pre_token) \ and not find_street(token, pre_token): return "c" return "" def find_district(token: pd.Series, pre_token: pd.Series) -> str: if any_of_in(DISTRICTS_PREFIXES, token['obj'].lower()): return "d" return "" def address_classification(token: pd.Series, pre_token: pd.Series) -> pd.Series: brackets = re.search(r"\(.+\)", token["obj"]) if brackets: token["obj"] = re.sub(r"\(.+\)", "()", token["obj"]) token["class"] += find_district(token, pre_token) token["class"] += find_countryside(token, pre_token) token["class"] += find_territory(token, pre_token) token["class"] += find_street(token, pre_token) token["class"] += find_house(token, pre_token) token["class"] += find_building(token, pre_token) token["class"] += find_litera(token, pre_token) if token['class'] == "": token['class'] = "w" if brackets: token["obj"] = re.sub(r"\(\)", brackets.group(), token["obj"]) return token # TODO: переработать систему из if в нормальный вид def split_address(address: str) -> List[str]: if ";" in address: address = address.replace(";", ",") if "," in address: tokens = address.split(",") t = list(map(str.strip, filter(lambda token: token != "", tokens))) tokens = pd.DataFrame() tokens['obj'] = t tokens = tokens[tokens["obj"] != ""] tokens.insert(len(tokens.columns), "class", "") res = [] accumulator = pd.Series(data={"address": "", "class": ""}) for i in range(len(tokens)): cur_tk = tokens.iloc[i] if i == 0: pre_token = pd.Series(data=["", ""], index=['obj', 'class']) else: pre_token = tokens.iloc[i - 1] cur_tk = address_classification(cur_tk, pre_token) tokens.iloc[i] = cur_tk print(tokens.iloc[i]) if not accumulator["class"]: accumulator["class"] = cur_tk['class'] accumulator["address"] = cur_tk["obj"] continue if CLASSES.index(accumulator["class"][-1]) < CLASSES.index(cur_tk["class"][0]) and accumulator["class"]!="w": accumulator["class"] += cur_tk['class'] accumulator["address"] += " " + cur_tk["obj"] else: ad_no_ranges = unfold_house_ranges(accumulator["address"]) accumulator["address"] = ad_no_ranges[-1] res.extend(ad_no_ranges) while accumulator["class"] and CLASSES.index(accumulator["class"][-1]) > CLASSES.index(cur_tk["class"][0]): if accumulator["class"][-1] == "h": accumulator["address"] = re.sub(r"[мкдтпучасток]*\.? ?\d{1,4} ?\/*\d* ?", "", accumulator["address"].lower()) elif accumulator["class"][-1] == "b": num = re.findall("к{0,1}\.? ?\d", accumulator["address"])[-1] accumulator["address"] = re.sub(num, "", accumulator["address"]) elif accumulator["class"][-1] == "l": accumulator ["address"] = re.sub(r"[литера]*\.? ?[А-Яа-я]{1}$","", accumulator["address"]) elif accumulator["class"][-1] == "r": accumulator["address"] = re.sub(r"пом\.? ?\d+","", accumulator["address"]) accumulator["class"] = accumulator["class"][:-1] if not accumulator["class"] or CLASSES.index(cur_tk["class"][0]) <= CLASSES.index("s") or accumulator["class"]=="w": accumulator["class"] = cur_tk["class"] accumulator["address"] = cur_tk["obj"] if cur_tk["class"][0] == "h": num = re.findall("\d{1,4} ?\/?\d* ?", cur_tk['obj'])[0] accumulator["address"] = re.sub(r"\d{1,4} ?\/*\d* ?", num, accumulator["address"]) cur_tk["class"] =cur_tk["class"][1:] if cur_tk["class"] and cur_tk["class"][0] == "b": num = re.findall("\d", cur_tk["obj"])[-1] if num and not "b" in accumulator["class"]: accumulator["class"] += "b" accumulator["address"] += "к." + num else: accumulator["address"] = re.sub(r"\d$", num, accumulator["address"]) cur_tk["class"] = cur_tk["class"][1:] if cur_tk["class"] and cur_tk["class"][0] == "l": num = re.findall("[А-Яа-я]", cur_tk["obj"].strip())[-1] accumulator["address"] = re.sub(r"[А-Яа-я]$", "", accumulator["address"].strip()) accumulator["address"] += num if num and not "l" in accumulator["class"]: accumulator["class"] += "l" else: if re.search(r"\d{1,3}([А-Я]|[а-я])( |$)", accumulator["address"]): accumulator["address"] = re.sub(r"[А-Яа-я]$", "", accumulator["address"].strip()) res.extend(unfold_house_ranges(accumulator["address"])) print(res) return res return [address] def split_pesoch_res(address: str) -> List[str]: t = re.sub(r",", " ", address) t = re.split(r"(Санкт-Петербург|Ленинградская обл|Л\.О)", t) t = list(map(str.strip, filter(lambda token: token != "", t))) tokens = [t[i] + " " + t[i+1] for i in range(0, len(t)-1, 2)] if tokens: return list(set(tokens)) return [address] def process_row(row: pd.Series[str]) -> pd.Series[str]: row = row.copy() if pd.isnull(row["Улица"]): row["Улица"] = [None] else: if row["РЭС"] == "Песочинский РЭС": addresses = split_pesoch_res(row["Улица"]) else: addresses = split_address(row["Улица"]) row["Улица"] = addresses return row def split_addresses(df: pd.DataFrame) -> pd.DataFrame: merged_df = df.apply(process_row, axis=1).reset_index() return merged_df.explode("Улица", ignore_index=True)